【题目】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极小值还是极大值,并说明理由.
【答案】略
【解析】
试题分析由f′(1)=0, f′(-1)=0, f(-1)=1,联立得a=.根据函数的单调性确定极值情况可求得结果.
试题解析:(1)f′(x)=3ax2+2bx+c
∵x=±1是函数f(x)的极值点,
∴x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.
① |
由根与系数的关系,得又f(1)=-1,∴a+b+c=-1, ③
由①②③解得a=,
(2)f(x)=x3-x,
∴f′(x)=x2-=(x-1)(x+1)
当x<-1或x>1时,f′(x)>0
当-1<x<1时,f′(x)<0
∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.
∴当x=-1时,函数取得极大值f(-1)=1,
当x=1时,函数取得极小值f(1)=-1.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且椭圆C过点.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点的直线l与椭圆C交于A、B两点,且与圆:交于E、F两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在xOy中,曲线的参数方程为(t为参数).在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线:,曲线:,.
(1)把的参数方程化为极坐标方程;
(2)设分别交,于点P,Q,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(单位:分.百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的众数和平均数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的内角A,B,C的对边分别为a,b,c,且满足.
(1)求角;
(2)若,___________________(从下列问题中任选一个作答,若选择多个条件分别解答,则按选择的第一个解答计分).
①的面积为,求的周长;
②的周长为21,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界互联网大会是由中国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识在共识中谋合作在合作中创共赢.2019年10月20日至22日,第六届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在岁内的人数为15,并根据调查结果画出如图所示的频率分布直方图:
(1)求,的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);
(2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能
否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
男性 | 女性 | 总计 | |
现场报名 | 50 | ||
网络报名 | 31 | ||
总计 | 50 |
参考公式及数据:,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在内为增函数,求实数的取值范围;
(2)若函数在内恰有两个零点,求实数的取值范围;
(3)已知,试估算的近似值,(结果精确到0.001)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com