精英家教网 > 高中数学 > 题目详情
3.已知集合S={1,2},T={x|x2<4x-3},则S∩T=(  )
A.{1}B.{2}C.1D.2

分析 求出T中不等式的解集确定出T,找出S与T的交集即可.

解答 解:由T中不等式变形得:x2-4x+3<0,即(x-1)(x-3)<0,
解得:1<x<3,即T=(1,3),
∵S={1,2},
∴S∩T={2},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知A(a,0)(a>0),B(0,a),E(-4,0),F(0,4),设△AOB的外接圆圆心为C,点P在圆C上,使△PEF的面积为12的点P有且只有两个,则实数a的取值范围是(2,10).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知两条直线m,n和两个平面α,β下面给出四个命题:
①α∩β=m,n?α⇒m∥n或m与n相交;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∩β=m,n∥m⇒n∥β或n∥α,其中正确命题的序号①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,1,2,3},集合B={x|x=ab,a,b∈A,且a≠b},则A∩B=(  )
A.{0,2,3}B.{0,1,2}C.{0,2,4}D.{0,2,3,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ln(${\sqrt{1+{x^2}}$+x)-$\frac{2}{{{2^x}+1}}$+1,a=f(${\frac{ln3}{3}}$),b=f(${\frac{ln5}{5}}$),c=-f(2-π),下列结论正确的是(  )
A.b>a>cB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{e^x}{x}$在x=1处的导数等于(  )
A.0B.1C.eD.2e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在无穷数列{an}中,a1=1,对于任意n∈N*,都有an∈N*,且an<an+1.设集合Am={n|an≤m,m∈N*},将集合Am中的元素的最大值记为bm,即bm是数列{an}中满足不等式an≤m的所有项的项数的最大值,我们称数列{bn}为数列{an}的伴随数列.
例如:数列{an}是1,3,4,…,它的伴随数列{bn}是1,1,2,3,….
(I)设数列{an}是1,4,5,…,请写出{an}的伴随数列{bn}的前5项;
(II)设an=3n-1(n∈N*),求数列{an}的伴随数列{bn}的前20项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经检测有一批产品合格率为$\frac{3}{4}$,现从这批产品中任取10件,设取得合格产品的件数为ξ,则P(ξ=k)取得最大值时k的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1,y1),(x2,y2)…(xn,yn),则下列说法中不正确的是(  )
A.若最小二乘法原理下得到的回归直线方程$\widehat{y}$=0.52x+$\widehat{a}$,则y与x具有正相关关系
B.残差平方和越小的模型,拟合的效果越好
C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适
D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好

查看答案和解析>>

同步练习册答案