精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的最小值;
(2)若,证明:当时,.

(1)h(0)=0;(2)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、不等式的基本性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力,考查学生的函数思想.第一问,先得到表达式,对求导,利用“单调递增;单调递减”解不等式求函数的单调区间,利用函数的单调性确定最小值所在的位置;第二问,先将代入到所求的式子中,得到①式,再利用第一问的结论,即,即得到,通过,在上式中两边同乘得到②式,若成立则所求证的表达式成立,所以构造函数φ(t)=(1-t)k-1+kt,证明即可.
(1)h(x)=f(x)-g(x)=ex-1-x,h¢(x)=ex-1.
当x∈(-∞,0)时,h¢(x)<0,h(x)单调递减;
当x∈(0,+∞)时,h¢(x)>0,h(x)单调递增.
当x=0时,h(x)取最小值h(0)=0.       4分
(2).   ①
由(1)知,,即
,则
所以.       ②  7分
设φ(t)=(1-t)k-1+kt,t∈[0,1].
由k>1知,当t∈(0,1)时,φ¢(t)=-k(1-t)k-1+k=k[1-(1-t)k]>0,
φ(t)在[0,1]单调递增,当t∈(0,1)时,φ(t)>φ(0)=0.
因为,所以
因此不等式②成立,从而不等式①成立.      12分
考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、不等式的基本性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-alnx(a∈R).
(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)讨论内和在内的零点情况.
(2)设内的一个零点,求上的最值.
(3)证明对恒有.[来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求函数的单调区间;
(2)求证:对于任意的,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)若,求函数的极值;
(2)设
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数在区间内的最大值;
(2)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的极值;
(2)当时,试确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数的简图,它与轴的交点是(0,0)和(1,0),


(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足(其中在点处的导数,为常数).
(1)求函数的单调区间
(2)设函数,若函数上单调,求实数的取值范围.

查看答案和解析>>

同步练习册答案