精英家教网 > 高中数学 > 题目详情
19.函数f(x)=max{sinx,cosx},求函数f(x)的值域.

分析 根据函数f(x)=max{sinx,cosx}在一个周期2π上的图象,可得函数f(x)的值域.

解答 解:根据函数f(x)=max{sinx,cosx}在一个周期2π上的图象(图中红色部分),
可得函数f(x)的值域为[-$\frac{\sqrt{2}}{2}$,1].

点评 本题主要考查正弦函数、余弦函数的图象,体现了数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.计算下列各式的值:
①${(\frac{1}{4})}^{-2}$+${(\frac{1}{6\sqrt{6}})}^{\frac{1}{2}}$+$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$-(1.03)0•(-$\frac{\sqrt{6}}{2}$)3
②$\frac{{a}^{\frac{4}{3}}{-8a}^{\frac{1}{3}}•b}{{4b}^{\frac{2}{3}}+2\root{3}{ab}{+a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在坐标平面上,不等式组$\left\{\begin{array}{l}{y≥x-1}\\{y≤-3|x|+1}\end{array}\right.$所表示的平面区域的面积为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{3\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个几何体的三视图如图所示,则该几何体的体积为6π+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若[-1,1]⊆{x||x2-tx+t|≤1},则t的取值范围[2-2$\sqrt{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}的前n项和为Sn,且Sn=m•2n-1-3,则m=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式$\frac{1}{x-y}$+$\frac{1}{y-z}$+$\frac{λ}{z-x}$≥0对x>y>z恒成立,则λ的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a∈(π,$\frac{3π}{2}$),$\frac{1-2co{s}^{2}α}{1-si{n}^{2}α}$=2,则tanα=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案