精英家教网 > 高中数学 > 题目详情
12.已知l1:mx+y-2=0,l2:(m+1)x-2my+1=0,若l1⊥l2则m=(  )
A.m=0B.m=1C.m=0或m=1D.m=0或m=-1

分析 对m分类讨论,利用两条直线相互垂直的充要条件即可得出.

解答 解:当m=0时,两条直线分别化为:y-2=0,x+1=0,此时两条直线相互垂直,∴m=0.
当m≠0时,∵l1⊥l2,∴-m×$\frac{m+1}{2m}$=-1,解得m=1.
综上可得:m=0,或m=1.
故选:C.

点评 本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知指数函数y=ax,且f(4)=2f(2).
(1)求a的值及f(2),f(4)的值;
(2)判断y=ax的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{π}{4}$<β<α<$\frac{3π}{4}$,且cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知O为△ABC所在平面内一点,且$\overrightarrow{OA}$2+$\overrightarrow{BC}$2=$\overrightarrow{OB}$2+$\overrightarrow{CA}$2=$\overrightarrow{OC}$2+$\overrightarrow{AB}$2,则O一定为△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线x+2y+1=0与直线mx+y-2=0互相平行,则m的值为(  )
A.1B.$\frac{1}{2}$C.-2D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$,对于给定的正数K,定义函数fg(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥K}\\{K,f(x)<K}\end{array}}$,若对于函数$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$定义域内的任意x,恒有fg(x)=f(x),则(  )
A.K的最小值为1B.K的最大值为1C.K的最小值为$2\sqrt{2}$D.K的最大值为$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=x3,则满足f(x)<1的x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lg(2016+x),g(x)=lg(2016-x)
(1)判断函数f(x)-g(x)的奇偶性,并予以证明.
(2)求使f(x)-g(x)<0成立x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.k∈Z时,$\frac{sin(kπ-α)•cos(kπ+α)}{sin[(k+1)π+α]•cos[(k+1)π+α]}$的值为(  )
A.-1B.1C.±1D.与α取值有关

查看答案和解析>>

同步练习册答案