精英家教网 > 高中数学 > 题目详情
7.若直线x+2y+1=0与直线mx+y-2=0互相平行,则m的值为(  )
A.1B.$\frac{1}{2}$C.-2D.$-\frac{2}{3}$

分析 利用两条直线平行,它们的斜率相等或斜率都不存在的性质求解.

解答 解:∵直线x+2y+1=0与直线mx+y-2=0互相平行,
∴-$\frac{1}{2}$=-m,
∴m=$\frac{1}{2}$,
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要注意直线与直线平行的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求幂函数y=x${\;}^{\frac{2}{3}}$的定义域和值域,并画出它的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平行四边形ABCD中,AB=10$\sqrt{3}$,BC=CD=AD=10,设M为△ABD的面积,N为△BCD的面积,问:当M2+N2为最大时,△ABD是怎样的三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=ln(a+e2x)-x为偶函数,则常数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两个函数f1(x)=ln(|x-a|+2),f2(x)=ln(|x-2a+1|+1),a∈R.
(1)若a=0,求使得f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f1(x)-f2(x)对于任意的实数x∈R恒成立,求实数a的取值范围;
(3)求函数F(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$-$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知l1:mx+y-2=0,l2:(m+1)x-2my+1=0,若l1⊥l2则m=(  )
A.m=0B.m=1C.m=0或m=1D.m=0或m=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若直线ax+3y-5=0过连结A(-1,-2),B(2,4)两点线段的中点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(cosx-sinx,2cosx)$,$\overrightarrow b=(cosx+sinx,sinx)(x∈R)$,则函数$f(x)={(\overrightarrow a•\overrightarrow b)^2}-1$是(  )
A.周期为π的偶函数B.周期为π的奇函数
C.周期为$\frac{π}{2}$的偶函数D.周期为$\frac{π}{2}$的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校随机调查了部分学生的上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]
(1)求图中x的值;
(2)若上学所需时间不少于1小时的学生可申请在学习住宿,则该校3000名学生中,估计有多少名学生可以申请住宿.

查看答案和解析>>

同步练习册答案