精英家教网 > 高中数学 > 题目详情
1.已知$\frac{π}{4}$<β<α<$\frac{3π}{4}$,且cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α的值.

分析 本题主要知识是角的变换,要求的角2α变化为(α+β)+(α-β),利用两个角的范围,得到要用的角的范围,用两角和的正弦公式,代入数据,得到结果.

解答 解:∵$\frac{π}{4}$<β<α<$\frac{3π}{4}$,
∴0<α-β<$\frac{π}{2}$,$\frac{π}{2}$<α-β$<\frac{3π}{2}$,
∵cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,
∴sin(α-β)=$\frac{5}{13}$,cos(α+β)=-$\frac{4}{5}$,
∴∴sin2α=sin[(α-β)+(α+β)],
=sin(α-β)cos(α+β)+cos(α-β)sin(α+β),
=$\frac{5}{13}$×(-$\frac{4}{5}$)+$\frac{12}{13}$×(-$\frac{3}{5}$)=-$\frac{56}{65}$.

点评 本小题主要考查三角函数和角公式等基础知识及运算能力.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值.角的变换是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知f(x)=tanx,则${f^'}(\frac{4π}{3})$等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.点E、F分别为四边形ABCD的对角线AC、BD的中点,设$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{DA}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足$\frac{a}{6}$=$\frac{b}{4}$=$\frac{c}{3}$,则$\frac{sin2A}{sinB+sinC}$=(  )
A.-$\frac{11}{14}$B.$\frac{12}{7}$C.-$\frac{11}{24}$D.-$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平行四边形ABCD中,AB=10$\sqrt{3}$,BC=CD=AD=10,设M为△ABD的面积,N为△BCD的面积,问:当M2+N2为最大时,△ABD是怎样的三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是不共面的三个向量,则λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$是λ22+v2=0的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=ln(a+e2x)-x为偶函数,则常数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知l1:mx+y-2=0,l2:(m+1)x-2my+1=0,若l1⊥l2则m=(  )
A.m=0B.m=1C.m=0或m=1D.m=0或m=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数a+b=2,a>0,b>0,则$\frac{1}{a}+\frac{a}{b}$的最小值为$\frac{1}{2}+\sqrt{2}$.

查看答案和解析>>

同步练习册答案