精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是不共面的三个向量,则λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$是λ22+v2=0的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分又不必要条件

分析 $\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是不共面的三个向量,则λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$?λ=μ=v?λ22+v2=0,即可判断出结论.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是不共面的三个向量,则λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$?λ=μ=v?λ22+v2=0,
∴λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=$\overrightarrow{0}$是λ22+v2=0的充要条件,
故选:C.

点评 本题考查了空间向量基本定理、简易逻辑的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)在一个周期内的图象如图所示.
(])求f(x)其解析式;
(2)求f(x)的对称中心;
(3)方程f(x)-m=0在x∈[0,$\frac{π}{2}$]上有两个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y∈R,且满足$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{x-2y+3≥0}\end{array}\right.$,则t=$\frac{y+1}{x}$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=3sin2x+8cos2x-4,x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{π}{4}$<β<α<$\frac{3π}{4}$,且cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,矩形ABCD中AD边的长为1,AB边的长为2,矩形ABCD位于第一象限,且顶点A,D分别在x轴y轴的正半轴上(含原点)滑动,则$\overrightarrow{OB}$$•\overrightarrow{OC}$的最大值是(  )
A.$\sqrt{5}$B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知O为△ABC所在平面内一点,且$\overrightarrow{OA}$2+$\overrightarrow{BC}$2=$\overrightarrow{OB}$2+$\overrightarrow{CA}$2=$\overrightarrow{OC}$2+$\overrightarrow{AB}$2,则O一定为△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$,对于给定的正数K,定义函数fg(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥K}\\{K,f(x)<K}\end{array}}$,若对于函数$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$定义域内的任意x,恒有fg(x)=f(x),则(  )
A.K的最小值为1B.K的最大值为1C.K的最小值为$2\sqrt{2}$D.K的最大值为$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一段圆弧的长度等于该圆内接正三角形的边长,则这段弧所对圆心角弧度为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案