精英家教网 > 高中数学 > 题目详情
17.如图所示,A,B,C是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的三个点,AB经过坐标原点O,AC经过双曲线的右焦点F,若BF⊥AC,且|$\overrightarrow{AF}$|=a,则该双曲线的离心率是(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{3}{2}$D.3

分析 利用双曲线的定义,推出a、b、c关系,然后求解双曲线的离心率即可.

解答 解:设双曲线的左焦点为F1,则四边形F1BFA是矩形,由|AF|=a,|AF1|-|AF|=2a,
可得|AF1|=3a.又|AF|=|BF1|=a,
在直角三角形BF1F中,(3a)2+a2=4c2,解得e=$\frac{\sqrt{10}}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,a1=100,d=-2,求S50=2550.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线kx2-y2=1的一条渐近线与直线2x-y+3=0垂直,则双曲线的离心率是$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,则直线l:y=$\frac{2016}{2015}$x与双曲线C的交点个数为(  )
A.0B.2C.4D.以上都可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{\sqrt{7}}{3}$x,它的一个顶点到较近焦点的距离为1,则双曲线方程为(  )
A.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是直角三角形,则该双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点P在双曲线$\frac{x^2}{a^2}-\frac{y^2}{16}$=1的右支上,F为双曲线的左焦点,Q为线段PF的中点,O为坐标原点.若|OQ|的最小值为1,则双曲线的离心率为(  )
A.$\frac{17}{15}$B.$\frac{15}{17}$C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(  )
A.20πB.$\frac{{20\sqrt{5}π}}{3}$C.D.$\frac{{5\sqrt{5}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b是不相等的两个正数,且blna-alnb=a-b,给出下列结论:①a+b-ab>1;②a+b>2;③$\frac{1}{a}$+$\frac{1}{b}$>2.其中所有正确结论的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步练习册答案