【题目】已知函数.
(1)若曲线在点处的切线与直线垂直,求的值;
(2)讨论方程的实数根的情况.
【答案】(1)(2)当时,方程有两个实数根;当时,方程无实数根.
【解析】试题分析: (1)求出,利用两直线垂直,求出 的值; (2)设 ,利用单调性求出, 分类讨论: ,得出结果.
试题解析:(1)依题意,得,
所以,
又由曲线在点处的切线与直线垂直,可得,
所以,解得;
(2)方程,即.
当时,得,解得,
当时,解得.但是,即,所以时,方程无实数根.
令,则,
故当时, 是单调递增函数;当时, 是单调递减函数,
所以.
当时,由,得.
又,令,则在区间上,故为增函数,所以,即,所以.
,故当时,方程有两个实数根;当时,方程无实数根.
点睛: 本题主要考查了导数的几何意义以及函数零点的个数,属于中档题.
【一题多解】在(2)中,由有,转化为函数与图象交点的个数,当与相切时,切点为,又,所以此时无零点;由图象知,当时图象有两个交点,即有两个零点, ,图象没有交点,无零点,综上讨论,得出结论: 有两个实数根, 无实数根.
科目:高中数学 来源: 题型:
【题目】编号为A,B,C,D,E的5个小球放在如图所示的5个盒子里,要求每个盒子只能放1个小球,且A球不能放在1,2号盒子里,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相交于两点,与轴, 轴分别相交于点和点,且,点是点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.
(1) 若椭圆的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,求椭圆的方程;
(2)当时,若点平分线段,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:
分公司名称 | 雅雨 | 雅鱼 | 雅女 | 雅竹 | 雅茶 |
月销售额(万元) | 3 | 5 | 6 | 7 | 9 |
月利润额(万元) | 2 | 3 | 3 | 4 | 5 |
在统计中发现月销售额和月利润额具有线性相关关系.
(1)根据如下的参考公式与参考数据,求月利润额与月销售额之间的线性回归方程;
(2)若该总公司还有一个分公司“雅果”月销售额为10万元,试估计它的月利润额是多少?
(参考公式: , ,其中: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,斜率为的直线与椭圆交于, 两点,点在直线的左上方.若,且直线, 分别与轴交于, 点,求线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形和均为平行四边形,点在平面内的射影恰好为点,以为直径的圆经过点, , 的中点为, 的中点为,且.
(Ⅰ)求证:平面平面;
(Ⅱ)求几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量与年份之间的回归方程=x+;
(2)利用(1)中所求出的直线方程预测该地2018年的粮食需求量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用定义证明函数在上是增函数;
(2)探究是否存在实数,使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;
(3)在(2)的条件下,解不等式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com