精英家教网 > 高中数学 > 题目详情
2.设数列{an}的前n项和为Sn,已知a1=1,a2=2,且an+2=3Sn-Sn+1+3,n∈N*
(1)证明:an+2=3an,并求数列{an}的通项公式;
(2)求Sn

分析 (1)利用数列递推关系式,结合an与Sn的关系得出结论;
(2)利用分类讨论思想写出数列通项,结合等比数列再进行分类求和.

解答 (1)证明:∵对任意的n∈N*,有an+2=3Sn-Sn+1+3,①
∴对任意的n∈N*,n≥2,有an+1=3Sn-1-Sn+3.②
①-②,得an+2-an+1=3an-an+1,即an+2=3an,n≥2.
又∵a1=1,a2=2,
∴a3=3S1-S2+3=3a1-(a1+a2)+3=3a1
∴对一切n∈N*,an+2=3an
∵an≠0,
∴$\frac{{a}_{n+2}}{{a}_{n}}$=3,
∴数列{a2n-1}是首项a1=1,公比为3的等比数列;数列{a2n}是首项a2=2,公比为3的等比数列.
∴a2n-1=3n-1,a2n=2×3n-1
∴an=$\left\{\begin{array}{l}{{3}^{\frac{n+1}{2}-1(n为奇数)}}\\{{2}^{\frac{n}{2}-1(n为偶数)}}\end{array}\right.$.
(2)解:由(1)知,a2n-1=3n-1,a2n=2×3n-1
则S2n=a1+a2+…+a2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=(1+3+…+3n-1)+2×(1+3+…+3n-1)=3×(1+3+…+3n-1)=$\frac{3({3}^{n}-1)}{2}$,
故S2n-1=S2n-a2n=$\frac{3({3}^{n}-1)}{2}$-2×3n-1=$\frac{3}{2}$×(5×3n-2-1).
综上所述,Sn=$\left\{\begin{array}{l}{\frac{3}{2}(5×{3}^{\frac{n-2}{2}-1}),(n=2k+1,k∈{N}^{+})}\\{\frac{3}{2}({3}^{\frac{n}{2}-1}),(n=2k,k∈{N}^{+})}\end{array}\right.$.

点评 本题主要考查数列递推关系式、等比数列通项公式和求和公式,结合转化思想和分类讨论思想求解数列问题,意在考查考生对数列递推关系的理解和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若下面框图所给程序运行结果为M=23,那么判断框(1)中应填入关于K的条件是(  )
A.k=5B.k≤5C.k<5D.k>5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,圆锥的底面半径r=1,母线长为4.
(1)求圆锥内切球的表面积;
(2)当D是母线PA的中点时,求从点A开始,绕圆锥侧面一周到达点D最短线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列正确的是(  )
A.直线l平行与平面α内的无数条直线,则l∥α
B.若直线a?α,则a∥α
C.若直线a∥α,b?α,则a∥b
D.若直线a∥b,b?α,直线a平行与平面内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x||x|<3},B={x|x-2<0},则A∪B=(  )
A.(-∞,3]B.[2,3)C.(-∞,3)D.(-3,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足:a1=1,a2=2,an+2=$\frac{{a}_{n}({a}_{n+1}^{2}+1)}{{a}_{a}^{2}+1}$(n≥1,n∈N*),令bn=$\frac{{{a_{n+1}}}}{{{a_n}+\frac{1}{a_n}}}$.
(1)求证:数列{bn}是常数列;
(2)求证:当n≥2时,2<an2-a2n-1≤3;
(3)求a2015的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{-x+3a,x≥0}\\{{a}^{x},x<0}\end{array}\right.$是(-∞,+∞)上的减函数,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$]C.[$\frac{1}{3}$,1)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中所有正确命题的序号为①③④.
①若方程a2x2+(a+2)y2+2ax+a=0表示圆,那么实数a=-1;
②已知函数f(x)=($\frac{1}{2}$)x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1-x2),则h(x)的图象关于原点对称;
③在正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点,则直线CE、D1F、DA三线共点;
④幂函数的图象不可能经过第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1
(2)点D在边A1C1上且C1D=$\frac{1}{3}$C1A1,证明在线段BB1上存在点E,使DE∥平面ABC1,并求此时$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

同步练习册答案