分析 (1)易知,对一切n≥1,an≠0,由an+2=$\frac{{a}_{n}({a}_{n+1}^{2}+1)}{{a}_{a}^{2}+1}$(n≥1,n∈N*),可得$\frac{{a}_{n+2}}{{a}_{n+1}+\frac{1}{{a}_{n+1}}}$=$\frac{{a}_{n+1}}{{a}_{n}+\frac{1}{{a}_{n}}}$.
依次利用上述关系式,可得:bn=$\frac{{a}_{2}}{{a}_{1}+\frac{1}{{a}_{1}}}$=1,即可证明.
(2)由(1)得an+1=an+$\frac{1}{{a}_{n}}$.又a1=1,可知数列{an}递增,则对一切n≥1,有an≥1成立,从而0<$\frac{1}{{a}_{n}^{2}}$≤1.当n≥2时,${a}_{n}^{2}$=$({a}_{n-1}+\frac{1}{{a}_{n-1}})^{2}$=${a}_{n-1}^{2}+\frac{1}{{a}_{n-1}^{2}}$+2,即可证明.
(3)当n≥2时,${a}_{n}^{2}$=${a}_{n-1}^{2}+\frac{1}{{a}_{n-1}^{2}}$+2=$\frac{1}{{a}_{n-1}^{2}}$+…+$\frac{1}{{a}_{1}^{2}}$+${a}_{1}^{2}$+2(n-1),${a}_{1}^{2}$=1,${a}_{2}^{2}$=4,通过放缩可得:63<a2015<64,可得a2015的整数部分.
解答 (1)证明:易知,对一切n≥1,an≠0,由an+2=$\frac{{a}_{n}({a}_{n+1}^{2}+1)}{{a}_{a}^{2}+1}$(n≥1,n∈N*),
可得$\frac{{a}_{n+2}}{{a}_{n+1}+\frac{1}{{a}_{n+1}}}$=$\frac{{a}_{n+1}}{{a}_{n}+\frac{1}{{a}_{n}}}$.
依次利用上述关系式,可得:bn=$\frac{{{a_{n+1}}}}{{{a_n}+\frac{1}{a_n}}}$=…=$\frac{{a}_{2}}{{a}_{1}+\frac{1}{{a}_{1}}}$=1,
从而数列数列{bn}是常数列.
(2)证明:由(1)得an+1=an+$\frac{1}{{a}_{n}}$.
又a1=1,∴可知数列{an}递增,则对一切n≥1,有an≥1成立,从而0<$\frac{1}{{a}_{n}^{2}}$≤1.
当n≥2时,${a}_{n}^{2}$=$({a}_{n-1}+\frac{1}{{a}_{n-1}})^{2}$=${a}_{n-1}^{2}+\frac{1}{{a}_{n-1}^{2}}$+2,∴${a}_{n}^{2}$-${a}_{n-1}^{2}$=$\frac{1}{{a}_{n-1}^{2}}$+2,∴2<an2-a2n-1≤3.
(3)当n≥2时,${a}_{n}^{2}$=${a}_{n-1}^{2}+\frac{1}{{a}_{n-1}^{2}}$+2=$\frac{1}{{a}_{n-1}^{2}}$+…+$\frac{1}{{a}_{1}^{2}}$+${a}_{1}^{2}$+2(n-1),${a}_{1}^{2}$=1,${a}_{2}^{2}$=4,
当n≥3时,${a}_{n}^{2}$=${a}_{n-1}^{2}+\frac{1}{{a}_{n-1}^{2}}$+2=$\frac{1}{{a}_{n-1}^{2}}$+…$\frac{1}{{a}_{2}^{2}}$+2+2(n-1)=$\frac{1}{{a}_{n-1}^{2}}$+…$\frac{1}{{a}_{2}^{2}}$+2n,
∴${a}_{2015}^{2}$=$\frac{1}{{a}_{n-1}^{2}}$+…$\frac{1}{{a}_{2}^{2}}$+4030>4030>632,
又${a}_{2015}^{2}$=$\frac{1}{{a}_{2014}^{2}}$+…+$\frac{1}{{a}_{1}^{2}}$+2×(2015-1)+1=4029+$\frac{1}{{a}_{2014}^{2}}$+…+$\frac{1}{{a}_{1}^{2}}$=4030+$(\frac{1}{4}+\frac{1}{6}+…+\frac{1}{2×2014})$=4030+$\frac{1}{2}$$(\frac{1}{2}+\frac{1}{3}+…+\frac{1}{39})$+$\frac{1}{2}(\frac{1}{40}+\frac{1}{41}+…+\frac{1}{199})$+$\frac{1}{2}(\frac{1}{200}+\frac{1}{201}+…+\frac{1}{2014})$<4030+$\frac{1}{2}(\frac{1}{2}×38$+$\frac{1}{40}×160$+$\frac{1}{200}×1815)$<4096=642,
∴63<a2015<64,因此a2015的整数部分.
点评 本题考查了数列的递推关系、数列的单调性、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-3x+4 | B. | y=$\frac{1}{3}$x+4 | C. | y=-3x-6 | D. | y=$\frac{1}{3}$x+$\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com