分析 利用等差数列的求和公式可得:a1=-$\frac{9d}{5}$.再利用等差数列的通项公式即可得出.
解答 解:设等差数列{an}的公差为d,
∵前100项之和等于前10项和的100倍,
∴100a1+$\frac{100×99d}{2}$=100$[10{a}_{1}+\frac{10×9d}{2}]$,
可得:a1=-$\frac{9d}{5}$.
则$\frac{{a}_{100}}{{a}_{10}}$=$\frac{{a}_{1}+99d}{{a}_{1}+9d}$=$\frac{99d-\frac{9d}{5}}{9d-\frac{9d}{5}}$=$\frac{27}{2}$.
故答案为:$\frac{27}{2}$.
点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线l平行与平面α内的无数条直线,则l∥α | |
| B. | 若直线a?α,则a∥α | |
| C. | 若直线a∥α,b?α,则a∥b | |
| D. | 若直线a∥b,b?α,直线a平行与平面内的无数条直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,1) | D. | [$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com