精英家教网 > 高中数学 > 题目详情
2.△ABC中,内角A、B、C所对的边分别为a、b、c,且acosB-bcosA=$\frac{1}{2}$c,则tan(A-B)的最大值是$\frac{\sqrt{3}}{3}$.

分析 由已知式子和正弦定理以及三角函数公式可得tanA=3tanB,且tanA>0.tanB>0,由两角差的正切公式可得tan(A-B)=$\frac{2}{\frac{1}{tanB}+3tanB}$,由基本不等式可得.

解答 解:∵△ABC中acosB-bcosA=$\frac{1}{2}$c,
∴由正弦定理可得sinAcosB-sinBcosA=$\frac{1}{2}$sinC,
∴2sinAcosB-2sinBcosA=sinC=sin(A+B),
∴2sinAcosB-2sinBcosA=sinAcosB+cosAsinB,
整理可得sinAcosB=3cosAsinB,∴tanA=3tanB,
由三角形内角的范围易得tanA>0.tanB>0,
∴tan(A-B)=$\frac{tanA-tanB}{1+tanAtanB}$=$\frac{2tanB}{1+3ta{n}^{2}B}$
=$\frac{2}{\frac{1}{tanB}+3tanB}$≤$\frac{2}{2\sqrt{\frac{1}{tanB}•3tanB}}$=$\frac{\sqrt{3}}{3}$
当且仅当$\frac{1}{tanB}$=3tanB即tanB=$\frac{\sqrt{3}}{3}$即B=$\frac{π}{6}$时tan(A-B)取最大值$\frac{\sqrt{3}}{3}$
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查正弦定理,涉及三角函数公式以及基本不等式求最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.从3,5,7,11这四个质数中任取两个相乘,可以得到多少个不相等的积?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列程序语句正确的是(  )
A.输出语句PRINT A=4B.输入语句  INPUT x=3
C.赋值语句 A=A*A+A-3D.赋值语句  55=a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=mx的焦点为(-1,0),则m=(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知约束条件$\left\{{\begin{array}{l}{x+y-3≥0}\\{2x+y-5≥0}\end{array}}\right.$,目标函数z=ax+y有最小值4,则a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在边长为8的正方形ABCD内任取一点M,则∠AMB>90°的概率为(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列1,-4,9,-16,25…的一个通项公式为(  )
A.an=n2B.an=(-1)nn2C.an=(-1)n+1n2D.an=(-1)n(n+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知z∈C,|z-(1+i)|=1,则|z+2+3i|的最大值为(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案