【题目】已知定义域为
的函数
对任意实数
,
满足:
,且
,
,并且当
时,
.给出如下结论:①函数
是偶函数;②函数
在
上单调递增;③函数
是以2为周期的周期函数;④
.其中正确的结论是( )
A.①②B.②③C.①④D.③④
科目:高中数学 来源: 题型:
【题目】“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | |||
缴税级数 | 每月应纳税所得额(含税)=收入-个税起征点 | 税率(%) | 每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除 | 税率(%) |
1 | 不超过1500元部分 | 3 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元部分 | 10 | 超过3000元至12000元部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元部分 | 30 | 超过35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
随机抽取某市1000名同一收入层级的
从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等。
假设该市该收入层级的
从业者都独自享受专项附加扣除,将预估的该市该收入层级的
从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的
从业者2019年月缴个税为
元,求
的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的
从业者各月少缴交的个税之和就超过2019年的月收入?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(1)试问
和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(2)求
经过有限次“
变换”后能够结束的充要条件;
(3)证明:
一定能经过有限次“
变换”后结束.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
,四边形
和
都是边长为2的正方形,点
,
分别是
,
的中点,二面角
的大小为60°.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,
,
,点F、E分别是BC、CD的中点,现沿AE将
折起,使点D至点M的位置,且
.
![]()
![]()
(1)证明:
平面MEF;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为
(
,a为常数)),过点
、倾斜角为
的直线
的参数方程满足
,(
为参数).
(1)求曲线C的普通方程和直线
的参数方程;
(2)若直线
与曲线C相交于A、B两点(点P在A、B之间),且
,求
和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的参数方程为
(其中
为参数),以原点为极点,
轴非负半轴为极轴建立极坐标系,则曲线
的极坐标方程为
.
(1)求圆
的普通方程与
的直角坐标方程;
(2)点
是曲线
上一点,由
向圆
引切线,切点分别为
,求四边形
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com