精英家教网 > 高中数学 > 题目详情
(2013•房山区一模)已知函数f(x)=
1
2
ax2-(a+1)x+lnx
g(x)=x2-2bx+
7
8

(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a<1时,求函数f(x)的单调区间;
(Ⅲ)当a=
1
4
时,函数f(x)在(0,2]上的最大值为M,若存在x∈[1,2],使得g(x)≥M成立,求实数b的取值范围.
分析:(Ⅰ)当a=0时求出f(x),f′(x),f(1),切线斜率k=f′(1),利用点斜式即可求得切线方程;
(Ⅱ)求出导数f′(x),分情况讨论:①a=0时,解不等式f′(x)>0,f′(x)<0即得f(x)的单调区间;②a≠0时,解方程f′(x)=0得x=1或x=
1
a
,按照1与
1
a
的大小讨论,根据f′(x)的符号即可求得其单调区间;
(Ⅲ)当a=
1
4
时,借助(Ⅱ)问单调性易求得M,存在x∈[1,2],使g(x)≥-
9
8
,等价于g(x)max≥-
9
8
,由二次函数的性质可得不等式组,解出即可;
解答:解:(Ⅰ)当a=0时,f(x)=-x+lnx,
f(1)=-1+ln1=-1,f′(x)=-1+
1
x
,f'(1)=0.
所以曲线y=f(x)在点(1,f(1))处的切线方程y=-1.
(Ⅱ)f′(x)=ax-(a+1)+
1
x
=
ax2-(a+1)x+1
x
=
(ax-1)(x-1)
x
(x>0)

①当a=0时,解f′(x)=-
x-1
x
>0
,得0<x<1,解f′(x)=-
x-1
x
<0
,得x>1,
所以函数f(x)的递增区间为(0,1),递减区间为在(1,+∞);
②a≠0时,令f'(x)=0得x=1或x=
1
a

i)当0<a<1时,
1
a
>1
,当x变化时f(x)、f′(x)随x的变化情况如下表:
x  (0,1)) 1 (1,
1
a
)
1
a
(
1
a
,+∞)
f′(x) + 0 - 0 +
f(x)
函数f(x)的递增区间为(0,1),(
1
a
,+∞)
,递减区间为(1,
1
a
)

ii)当a<0时,
1
a
<0

在(0,1)上f'(x)>0,在(1,+∞)上f'(x)<0,
所以函数f(x)的递增区间为(0,1),递减区间为(1,+∞);
(Ⅲ)由(Ⅱ)知,当a=
1
4
时,f(x)在(0,1)上是增函数,在(1,2)上是减函数,
所以M=f(1)=-
9
8

存在x∈[1,2],使g(x)≥-
9
8
,即存在x∈[1,2],使x2-2bx+
7
8
≥-
9
8

只需函数g(x)在[1,2]上的最大值大于等于-
9
8

所以有
g(1)≥-
9
8
g(2)≥-
9
8
,即
1-2b+
7
8
≥-
9
8
4-4b+
7
8
≥-
9
8
,解得:b≤
3
2

所以b的取值范围是(-∞,
3
2
]
点评:本题考查利用导数研究函数的单调性、某点处切线方程、在闭区间上的最值等知识,考查分类讨论思想,考查学生分析解决问题的能力,把存在性问题转化为最值问题是解决(Ⅲ)问的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区一模)设集合M是R的子集,如果点x0∈R满足:?a>0,?x∈M,0<|x-x0|<a,称x0为集合M的聚点.则下列集合中以1为聚点的有(  )
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知函数f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知全集U=R,集合M={x|x≤1},N={x|x2>4},则M∩(?RN)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)执行如图所示的程序框图.若输出S=15,则框图中①处可以填入(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若PC与AB所成角为45°,求PE的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

同步练习册答案