分析 利用an=Sn-Sn-1对Sn=1-nan(n=1,2,3,…)进行变形,可得(n+1)Sn-nSn-1=1、nSn-1-(n-1)Sn-2=1、…、3S2-2S1=1,累加即得结论.
解答 解:∵Sn=1-nan(n=1,2,3,…),
∴Sn=1-n(Sn-Sn-1)(n=2,3,…),
化简得:(n+1)Sn-nSn-1=1,
∴nSn-1-(n-1)Sn-2=1,
…
3S2-2S1=1,
叠加得:(n+1)Sn-2S1=n-1,
∵S1=a1=1-a1,
∴a1=$\frac{1}{2}$,
∴(n+1)Sn=n,即Sn=$\frac{n}{n+1}$,
故答案为:$\frac{n}{n+1}$.
点评 本题考查求数列的和,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 个 | B. | 2 个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{7}$ | B. | -$\frac{5}{7}$ | C. | -$\frac{2}{7}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 先增后减 | B. | 单调递增 | C. | 单调递减 | D. | 先减后增 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com