精英家教网 > 高中数学 > 题目详情
12.A、B是半径为2的圆O上的两点,M是弦AB上的动点,若△AOB为直角三角形,则$\overrightarrow{OM}$•$\overrightarrow{AM}$的最小值为(  )
A.-1B.-$\frac{1}{2}$C.0D.2

分析 $\overrightarrow{OM}$表示成$\overrightarrow{OA}+\overrightarrow{AM}$,从而$\overrightarrow{OM}•\overrightarrow{AM}$=$(\overrightarrow{OA}+\overrightarrow{AM})•\overrightarrow{AM}$,根据已知条件有∠OAB=45°,$|\overrightarrow{OA}|=2$,进行数量积的运算后可得到$\overrightarrow{OM}•\overrightarrow{AM}={\overrightarrow{AM}}^{2}+\sqrt{2}|\overrightarrow{AM}|$,从而得到$|\overrightarrow{AM}|=0$时,$\overrightarrow{OM}•\overrightarrow{AM}$取得最小值.

解答 解:如图,根据条件知OA⊥OB,∠OAB=45°;
∴$\overrightarrow{OM}•\overrightarrow{AM}=(\overrightarrow{OA}+\overrightarrow{AM})•\overrightarrow{AM}$=$\overrightarrow{OA}•\overrightarrow{AM}+{\overrightarrow{AM}}^{2}$
=-$\sqrt{2}|\overrightarrow{AM}|+|\overrightarrow{AM}{|}^{2}$;
∴|$\overrightarrow{AM}$|=$\frac{\sqrt{2}}{2}$时,$\overrightarrow{OM}•\overrightarrow{AM}$取最小值-$\frac{1}{2}$.
故选:B.

点评 考查向量加法的几何意义,以及数量积的计算公式,知道若△AOB是直角三角形,一定∠AOB为直角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4x-x4,x∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);
(Ⅲ)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-$\frac{a}{3}$+4${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在[t,+∞)上的函数f(x)、g(x)单调递增,f(t)=g(t)=M,若对任意k>M存在x1<x2,使得f(x1)=g(x2)=k成立,则称g(x)是f(x)在[t,+∞)上的“追逐函数”,已知f(x)=x2,给出下列四个函数:
①g(x)=x;
②g(x)=lnx+1;
③g(x)=2x-1;
④g(x)=2-$\frac{1}{x}$;
其中f(x)在[1,+∞)上的“追逐函数”有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-1|+|x+1|.
(1)求不等式f(x)≥3的解集;
(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知甲,乙两名运动员的罚球命中率分别为0.8和0.6,甲在无人防守下上篮命中率为0.95,已知罚球中一球得1分,上篮命中得2分.
(1)若两人各罚两次球,求一共罚中2次的概率;
(2)假若在一场比赛中甲获得一次无人防守的上篮机会,此时防守球员无法形成有效防守,只能选择犯规或什么都不做,假设防守球员犯规,甲球员仍然有$\frac{1}{5}$的概率命中此球,若命中得到2分并追加一次罚球,若在防守球员犯规的情况下甲没有命中,则甲罚球两次,问此时防守球员应不应该犯规?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点M(1,1),N(4,-3),则与向量$\overrightarrow{MN}$共线的单位向量为(  )
A.($\frac{3}{5}$,-$\frac{4}{5}$)B.(-$\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,-$\frac{4}{5}$)或(-$\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a,b∈(0,2),则函数f(x)=$\frac{1}{3}$ax3+2x2+4bx+1存在极值的概率为(  )
A.$\frac{1+2ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x>0,y>0,2x+y=2,则$\frac{2}{x+1}$+$\frac{1}{y}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|lnx|,g(x)=$\left\{\begin{array}{l}{0,0<x≤1}\\{|{x}^{2}-4|-2,x>1}\end{array}\right.$,则方程|f(x)+g(x)|=1实根的个数为4.

查看答案和解析>>

同步练习册答案