精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=4x-x4,x∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);
(Ⅲ)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-$\frac{a}{3}$+4${\;}^{\frac{1}{3}}$.

分析 (Ⅰ)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;
(Ⅱ)设出点p的坐标,利用导数求出切线方程g(x)=f′(x0)(x-x0),构造辅助函数F(x)=f(x)-g(x),利用导数得到对于任意实数x,
有F(x)≤F(x0)=0,即对任意实数x,都有f(x)≤g(x);
(Ⅲ)由(Ⅱ)知,$g(x)=-12(x-{4}^{\frac{1}{3}})$,求出方程g(x)=a的根${x}_{2}′=-\frac{a}{12}+{4}^{\frac{1}{3}}$,由g(x)在(-∞,+∞)上单调递减,得到x2≤x2′.
同理得到x1′≤x1,则可证得${x}_{2}-{x}_{1}≤{x}_{2}′-{x}_{1}′=-\frac{a}{3}+{4}^{\frac{1}{3}}$.

解答 (Ⅰ)解:由f(x)=4x-x4,可得f′(x)=4-4x3
当f′(x)>0,即x<1时,函数f(x)单调递增;
当f′(x)<0,即x>1时,函数f(x)单调递减.
∴f(x)的单调递增区间为(-∞,1),单调递减区间为(1,+∞).
(Ⅱ)证明:设点p的坐标为(x0,0),则${x}_{0}={4}^{\frac{1}{3}}$,f′(x0)=-12,
曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0),即g(x)=f′(x0)(x-x0),
令函数F(x)=f(x)-g(x),即F(x)=f(x)-f′(x0)(x-x0),
则F′(x)=f′(x)-f′(x0).
∵F′(x0)=0,∴当x∈(-∞,x0)时,F′(x)>0;当x∈(x0,+∞)时,F′(x)<0,
∴F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,
∴对于任意实数x,F(x)≤F(x0)=0,即对任意实数x,都有f(x)≤g(x);
(Ⅲ)证明:由(Ⅱ)知,$g(x)=-12(x-{4}^{\frac{1}{3}})$,设方程g(x)=a的根为x2′,可得${x}_{2}′=-\frac{a}{12}+{4}^{\frac{1}{3}}$.
∵g(x)在(-∞,+∞)上单调递减,又由(Ⅱ)知g(x2)≥f(x2)=a=g(x2′),
因此x2≤x2′.
类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x,
对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).
设方程h(x)=a的根为x1′,可得${x}_{1}′=\frac{a}{4}$,
∵h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),
因此x1′≤x1
由此可得${x}_{2}-{x}_{1}≤{x}_{2}′-{x}_{1}′=-\frac{a}{3}+{4}^{\frac{1}{3}}$.

点评 本小题主要考查导数的运算、导数的几何意义、利用导数研究函数的性质等基础知识.考查函数思想、化归思想,考查综合分析问题和解决问题的能力,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为(  )
A.2B.7C.8D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i为虚数单位,i607的共轭复数为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-y2=1D.x2-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是(  )
A.直线B.抛物线C.椭圆D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z=(a2-4)+(a+2)i为纯虚数,则$\frac{a+{i}^{2015}}{1+2i}$的值为-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.A、B是半径为2的圆O上的两点,M是弦AB上的动点,若△AOB为直角三角形,则$\overrightarrow{OM}$•$\overrightarrow{AM}$的最小值为(  )
A.-1B.-$\frac{1}{2}$C.0D.2

查看答案和解析>>

同步练习册答案