精英家教网 > 高中数学 > 题目详情
15.已知点(1,$\frac{1}{6}$)是函数f(x)=$\frac{1}{2}$ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c-f(n).数列{bn}(bn>0)的首项为2c,前n项和满足$\sqrt{{S}_{n}}$=$\sqrt{{S}_{n-1}}$+1(n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{$\frac{1}{{{b}_{n}b}_{n+1}}$}的前n项和为Tn,问使Tn>$\frac{1000}{2017}$的最小正整数n是多少?

分析 (Ⅰ)由已知求得a,${a}_{1}=c-\frac{1}{6}$,a2=(c-$\frac{1}{18}$)-(c-$\frac{1}{6}$)=$\frac{1}{9}$,${a}_{3}=(c-\frac{1}{54})-(c-\frac{1}{18})=\frac{1}{27}$,得公比q=$\frac{{a}_{3}}{{a}_{2}}=\frac{1}{3}$,即可写出通项;
(Ⅱ)可得$\sqrt{{s}_{n}}$是首项为1,公差为1的等差数列.由$\left\{\begin{array}{l}{{s}_{n}={n}^{2}}\\{{s}_{n-1}=(n-1)^{2}}\end{array}\right.$(n≥2)⇒bn=2n-1,(n≥2).
 $\frac{1}{{{b}_{n}b}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,累加求得Tn=$\frac{n}{2n+1}>\frac{1000}{2017}$,得n$>\frac{1000}{17}$,即可得最小正整数n.

解答 (Ⅰ)解:$\frac{1}{2}a=f(1)=\frac{1}{6}$.∴$a=\frac{1}{3}$,
∵$f(n)=\frac{1}{2}•\frac{1}{{3}^{n}}$,则等比数列{an}的前n项和为c-$\frac{1}{2}•\frac{1}{{3}^{n}}$
${a}_{1}=c-\frac{1}{6}$,a2=(c-$\frac{1}{18}$)-(c-$\frac{1}{6}$)=$\frac{1}{9}$,${a}_{3}=(c-\frac{1}{54})-(c-\frac{1}{18})=\frac{1}{27}$
由{an}为等比数列,得公比q=$\frac{{a}_{3}}{{a}_{2}}=\frac{1}{3}$…(3分)
∴${a}_{1}=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{3}=c-\frac{1}{6}$,则c=$\frac{1}{2}$,a${\;}_{1}=\frac{1}{3}$
∴${a}_{n}=\frac{1}{3}•\frac{1}{{3}^{n-1}}=\frac{1}{{3}^{n}}$…(5分)
(Ⅱ):由b1=2c=1,得s1=1
n≥2时,$\sqrt{{s}_{n}-{s}_{n-1}}=1$,则$\sqrt{{s}_{n}}$是首项为1,公差为1的等差数列.
∴$\sqrt{{s}_{n}}=1+(n-1)$,${s}_{n}={n}^{2}$ (n∈N+)…(7分)
则$\left\{\begin{array}{l}{{s}_{n}={n}^{2}}\\{{s}_{n-1}=(n-1)^{2}}\end{array}\right.$(n≥2)⇒bn=2n-1,(n≥2).
当n=1时,b1=1满足上式
∴${b}_{n}=2n-1,n∈{N}^{+}$         …(9分)
∵$\frac{1}{{{b}_{n}b}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$
∴Tn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$…(11分)
由Tn=$\frac{n}{2n+1}>\frac{1000}{2017}$,得n$>\frac{1000}{17}$,则最小正整数n为59…(12分)

点评 本题考查了数列与函数,考查了等比数列的通项、裂项求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,一直角墙角的两边足够长,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和αm(0<α≤10),现用12m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内(包括边界),则函数u=f(a)(单位:m2)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为9x+y-1=0,则曲线y=f(x)在点(1,f(1))处的切线方程为7x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正项数列{an}的前n项和为Sn,点(an,Sn)(n∈N*)都在函数f(x)=$\frac{1}{4}{x^2}+\frac{1}{2}x-\frac{15}{4}$的图象上.
(1)求数列{an}的通项公式;
(2)若bn=an•3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-1,2).
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正数a,b满足$\frac{1}{a}$+$\frac{4}{b}$=$\sqrt{ab}$,则ab的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是边长为2的正方形,PA⊥平面ABCD,DE∥PA,PA=2DE=AB,F为PC的中点.
(1)求证:EF∥平面ABCD;
(2)求点A到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了判定两个分类变量X和Y是否有关系,应用K2独立性检验法算得K2的观测值为6(所用数据可参考卷首公式列表),则下列说法正确的是(  )
A.在犯错误的概率不超过0.025的前提下认为“X和Y有关系”
B.在犯错误的概率不超过0.025的前提下认为“X和Y没有关系”
C.在犯错误的概率不超过0.010的前提下认为“X和Y有关系”
D.在犯错误的概率不超过0.010的前提下认为“X和Y没有关系”

查看答案和解析>>

同步练习册答案