精英家教网 > 高中数学 > 题目详情
已知:log 
1
2
(x+y+4)<log 
1
2
(3x-y-2),若x-y<λ恒成立,则λ的取值范围是(  )
A、(-∞,10]
B、(-∞,10)
C、[10,+∞)
D、(3,+∞)
考点:指、对数不等式的解法
专题:不等式的解法及应用
分析:由log 
1
2
(x+y+4)<log 
1
2
(3x-y-2)得到
x+y+4>0
3x-y-2>0
x-y-3<0
,由线性规划知识求出x-y的最大值得答案.
解答: 解:由log 
1
2
(x+y+4)<log 
1
2
(3x-y-2),得
x+y+4>0
3x-y-2>0
x+y+4>3x-y-2
,即
x+y+4>0
3x-y-2>0
x-y-3<0
,作出可行域如图,

令t=x-y,得y=x-t,由图可知,当直线y=x-t与x-y-3=0重合时,直线y=x-t在y轴上的截距最小,t最大,最大值为3.
∴使x-y<λ恒成立的λ的取值范围是(3,+∞).
故选:D.
点评:本题考查了指数不等式与对数不等式的解法,考查了数学转化思想方法,训练了恒成立问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是△ABC所在平面内一点,若
AP
=
3
4
BC
-
2
3
BA
,则△PBC与△ABC的面积的比为(  )
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设方程(m+1)|ex-1|-1=0的两根为x1,x2(x1<x2),方程|ex-1|-m=0的两根为x3,x4(x3<x4),m∈(0,
1
2
),则(x4+x1)-(x3+x2)的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的零点:y=2x-6.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列关于x的不等式:
(1)
x-1
x-a2
>0;
(2)(ax-1)(x+1)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比为正数的等比数列,a1=2,a3-a2=12,数列{bn}满足:bn=log3
3n
2
+log3an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)数列{cn}满足:cn=
bn+1-bn
3
2
an-1
,求证:c1+c2+…+cn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,
(1)an=2n+3,求a1和d;
(2)a7=131,a14=61,求a100,并判断0是不是该数列的项?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点P是AB边上的点,且AP=4BP,Q是BC的中点,AQ与CP的交点为M,若
AM
=k
AQ
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的边长为a,M是AA1的中点,请作出过C,D1,M三点的截面,且计算它的面积.

查看答案和解析>>

同步练习册答案