精英家教网 > 高中数学 > 题目详情
f(x)=
lnx,x<2
ex-2,x≥2
,则f[f(2)]=
 
考点:函数的值
专题:函数的性质及应用
分析:由分段函数的性质得f(2)=e2-2=1,从而f[f(2)]=f(1)=ln1=0.
解答: 解:∵f(x)=
lnx,x<2
ex-2,x≥2

∴f(2)=e2-2=1,
f[f(2)]=f(1)=ln1=0.
故答案为:0.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,①
m⊥n
n?α
⇒m⊥α,②
a⊥α
a?β
⇒α⊥β,③
m⊥α
n⊥α
⇒m∥n,④
m?α
n?β
α∥β
⇒m∥n.其中为假命题的是(  )
A、①和②B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,Sn为其前n项和.若a1+a3+a5+a7=-4,S8=-16,则公差d=
 
;数列{an}的前
 
项和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=
1-x2(x≤1)
x-3(x>1)
,则f[f(2)]的值为(  )
A、1B、3C、-3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,与y=x表示同一函数的是(  )
A、y=
x2
x
B、y=
3x3
C、y=(
x
)2
D、y=
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin2C=sin2A+sin2B,则△ABC为(  )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
4
-
y2
12
=1右支上的一个动点,F1,F2为左右两个焦点,在△PF1F2中,令∠PF1F2=α,∠PF2F1=β,则tan
α
2
÷tan
β
2
的值为(  )
A、
1
3
B、3-2
2
C、3
D、与P的位置有关的变数

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
m
=(2sinA-sinC,cosC),
n
=(sinB,cosB),且
m
n

(1)求∠B的大小;
(2)∠B的角平分线交AC于点D,记BC=x,BA=y,BD=1,请将y用含x的式子表示,并求出y的取值范围.

查看答案和解析>>

同步练习册答案