精英家教网 > 高中数学 > 题目详情
18.一房间有大小相同的3扇窗户,其中一扇是打开的,一只鸟儿飞了进来,它要出去只能从开着的窗户飞走,鸟儿在房间里飞来飞去,试图飞出,假定这只鸟儿(笨鸟)是没有记忆的,且它飞向各扇窗户是随机的.
(1)求笨鸟第四次能飞出窗户的概率;
(2)该户主声称他养的一只鸟(聪明鸟)具有记忆功能,它飞向任何一扇窗户的尝试都不会多于一次,如户主所说是确实的,现把这只聪明鸟带入房间,求它试飞次数的分布列;
(3)求笨鸟试飞次数小于聪明鸟飞次数的概率.

分析 (1)每次能飞出的概率为$\frac{1}{3}$,利用相互独立事件的概率公式可求笨鸟第四次能飞出窗户的概率;
(2)用ξ表示聪明鸟试飞的次数,则ξ=1,2,3,则P(ξ=k)=$\frac{1}{3}$,可求;
(3)用η表示笨鸟试飞的次数,则P(η<ξ)=P(η=1,ξ=2)+P(η=1,ξ=3)+P(η=2,ξ=3)可求.

解答 解:(1)笨鸟第四次能飞出窗户的概率P=$\frac{2}{3}×\frac{2}{3}×\frac{2}{3}×\frac{1}{3}$=$\frac{8}{81}$.(4分)
(2)用ξ表示聪明鸟试飞的次数,则ξ=1,2,3.
则P(ξ=1)=$\frac{1}{3}$,P(ξ=2)=$\frac{2}{3}×\frac{1}{2}=\frac{1}{3}$,P(=3)=$\frac{2}{3}×\frac{1}{2}×1$=$\frac{1}{3}$
分布列为P(ξ=k)=$\frac{1}{3}$(ξ=1,2.3)(8分)
(3)用η表示笨鸟试飞的次数,
则P(η<ξ)=P(η=1,ξ=2)+P(η=1,ξ=3)+P(η=2,ξ=3)
=$\frac{1}{3}×\frac{1}{3}+\frac{1}{3}×\frac{1}{3}+(\frac{2}{3}×\frac{1}{3})×\frac{1}{3}$=$\frac{8}{27}$(12分)

点评 本题主要考查了离散型简单随机变量的分布列的求解,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知m,n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m∥α,n∥m,则n∥α
C.若m∥α,n∥β,且m∥n,则α∥βD.若m⊥β,m∥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知g(x)=bx2+cx+1,f(x)=x2+ax-lnx+1,g(x)在x=1处的切线为y=2x
(Ⅰ)求b,c的值;
(Ⅱ)若a=-1,求f(x)的极值;
(Ⅲ)设h(x)=f(x)-g(x),是否存在实数a,当x∈(0,e],(e≈2.718,为自然常数)时,函数h(x)的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(a-x)ex-1(e为自然对数的底数).
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是一个三次函数,f′(x)为其导函数,如图是函数y=x•f′(x)的图象的一部分,则函数f(x)的极大值是(  )
A.f(-1)B.f(-2)C.f(1)D.f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对某中学高二某班40名学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二堆条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
喜欢数学课程不喜欢数学课程总计
总计40
(Ⅱ)从该班所有女生中随机选取2人交流学习体会,求这2人中喜欢数学课程的人数X的分布列和数学期望.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k00.50.40.250.150.10.01
k00.4550.7081.3232.0722.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知{an}为等差数列,Sn为其前n项和,若a3=-6,S1=S3,则公差d=-12; Sn的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在△ABC中,∠A、∠B、∠C所对的边是a、b、c,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$且$\overrightarrow{GA}$•$\overrightarrow{GB}$=0,若(tanA+tanB)•tanC=mtanAtanB,则m的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=mlnx+$\frac{2m}{x}$-$\frac{{e}^{x}}{{x}^{2}}$
(1)若m≤0,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求m的取值范围.

查看答案和解析>>

同步练习册答案