精英家教网 > 高中数学 > 题目详情
2.已知集合A={x||x+1|≤2,x∈z},B={y|y=x2,-1≤x≤1},则A∩B=(  )
A.(-∞,1]B.[-1,1]C.{0,1}D.{-1,0,1}

分析 分别求出A和B,由此能求出A∩B.

解答 解:∵集合A={x||x+1|≤2,x∈z}
={x|-3≤x≤1,x∈Z}={-3,-2,-1,0,1},
B={y|y=x2,-1≤x≤1}={y|0≤y≤1},
∴A∩B={0,1}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知倾斜角为α的直线l与直线x-2y+1=0垂直,则tan2α=(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过A,B两点,且A(2,1),$\overrightarrow{AB}$=(4,2).
(1)求直线l的方程;
(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆x2+2y2=4,求以(1,1)为中点的弦的长度?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.以椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心O为圆心,$\sqrt{{a}^{2}+{b}^{2}}$为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为A,左焦点为F,上顶点为B,且满足|AB|=2,S△OAB=$\frac{\sqrt{6}}{2}$S△OFB
(1)求椭圆C及其“准圆”的方程;
(2)对于给定的椭圆C,若点P是射线y=$\sqrt{3}$x(x≥0)与椭圆C的“准圆”的交点,是否存在以P为一个顶点的“准圆”的内接矩形,使椭圆C完全落在该矩形所围成的区域内(包括边界)?若存在,请写出作图方法,并予以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.且|OA|+|OB|=2|AB|.
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体侧视图与正视图相同,则它的表面积为(  )
A.12+6πB.16+6πC.16+10πD.8+6π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线方程为x-2y-2=0,求f(x)的极值;
(Ⅱ)若b=1,是否存在a∈R,使f(x)的极值大于零?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且$({2b-\sqrt{2}c})cosA=\sqrt{2}acosC$.
(1)求角A的大小;
(2)若a=1,$cosB=\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案