精英家教网 > 高中数学 > 题目详情
等比数列{an}中,S2=8,S6=168,求S4
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:利用等比数列中每相邻两项的和也成等比数列可8,S4-8,168-S4成等比数列,故有(S4-8)2=8(168-S4),由此求得S4的值.
解答: 解:∵等比数列{an}中,若S2=8,S6=168,由于每相邻两项的和也成等比数列,
∴S2 、S4-S2 、S6 -S4成等比数列,即8,S4-8,168-S4成等比数列.
∴(S4-8)2=8(168-S4),解得S4=40或-32.
点评:本题主要考查等比数列的定义和性质,利用了等比数列中每相邻两项的和也成等比数列,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
1+x2
,那么f(1)+f(2)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:
2x-4
-
x+5
=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
3x-2,x≥2
-2,x<2
的值的程序框图如图所示.
(1)指出程序框图中的错误之处并重新绘制解决该问题的程序框图;
(2)写出对应程序语句,且回答下面提出的问题:
问题1,要使输出的值为7,输入的x的值应为多少?
问题2,要使输出的值为正数,输入的x应满足什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+3x.
(1)若x=3是f(x)的一个极值点,求f(x)在区间[2,a]上的最大值和最小值;
(2)若f(x)在x∈[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x2-x-6)的定义域为A,函数g(x)=x2-2x在区间[-1,4]上的值域为B,求A∪B及(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-2alnx+(a-2)x,a∈R.
(I)当a=1时,求函数f(x)图象在点(1,f(1))处的切线方程;
(Ⅱ)当a<0时,讨论函数f(x)的单调性;
(Ⅲ)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2
f(x2)-f(x1)
x2-x1
>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…
(1)证明数列{lg(1+an)}是等比数列;
(2)设Tn=(1+a1)•(1+a2)…(1+an),求Tn及数列{an}的通项;
(3)记bn=
1
an
+
1
an+2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

不用计算器计算
(1)(-
27
8
 -
2
3
+(0.002) -
1
2
-10(
5
-2)-1+(
2
-
3
0
(2)log3
27
+lg25+lg4+7log72+(-9.8)0

查看答案和解析>>

同步练习册答案