精英家教网 > 高中数学 > 题目详情

椭圆的离心率为,其左焦点到点的距离为

(1) 求椭圆的标准方程;

(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

 

 

(1);(2)证明详见解析,.

【解析】

试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到,由于AB为直径的圆过椭圆右顶点 A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到 或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.

试题解析:(1)由题:

左焦点 (-c,0) 到点 P(2,1) 的距离为:② 2分

由①②可解得c = 1 , a = 2 , b 2 = a 2-c 2 = 3. 3分

∴所求椭圆 C 的方程为. 4分

(2)设 A(x1,y1)、B(x2,y2),将 y = kx + m代入椭圆方程得

(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.

, 6分

且y1 = kx1 + m,y2 = kx2 + m.

∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以. 7分

所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2 = (x1-2) (x2-2) + (kx1 + m) (kx2 + m)

= (k 2 + 1) x1x2 + (km-2) (x1 + x2) + m 2 + 4

= (k 2 + 1)·-(km-2)·+ m 2 + 4 = 0 . 10分

整理得 7m 2 + 16km + 4k 2 = 0.∴ 或 m = -2k 都满足 △ > 0. 12分

若 m = -2k 时,直线 l 为 y = kx-2k = k (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分

时,直线 l 为, 恒过定点 . 14分

考点:椭圆的标准方程及其几何性质、直线与椭圆相交问题.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届广东省梅州市高二下学期期中理科数学试卷(解析版) 题型:选择题

已知{1,2}⊆Z⊆{1, 2,3,4,5},满足这个关系式的集合Z共有 (  ).

A.2个 B.6个 C.4个 D.8个

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期中理科数学试卷(解析版) 题型:选择题

已知是双曲线)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于两点,是锐角三角形,则该双曲线的离心率的取值范围是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期中文科数学试卷(解析版) 题型:填空题

在长为的线段上任取一点, 则点与线段两端点的距离都大于的概率是 .

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期中文科数学试卷(解析版) 题型:选择题

”是“”的( )

A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省惠州市高三第一次调研考试理科数学试卷(解析版) 题型:填空题

如图所示,是等腰三角形,是底边延长线上一点,

,则腰长= .

 

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省惠州市高三第一次调研考试理科数学试卷(解析版) 题型:选择题

已知向量的夹角为,定义的“向量积”,且是一个向量,它的

长度,若,则( )

A. B.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省惠州市高三第一次调研考试文科数学试卷(解析版) 题型:填空题

变量满足线性约束条件,则目标函数的最大值为 .

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省惠州市高二3月月考文科数学试卷(解析版) 题型:填空题

设复数满足,则的实部是________.

 

查看答案和解析>>

同步练习册答案