精英家教网 > 高中数学 > 题目详情
点A(1,0)到直线x+y-2=0的距离为(  )
A、
1
2
B、
2
2
C、1
D、2
考点:点到直线的距离公式
专题:直线与圆
分析:利用点到直线的距离公式求解.
解答: 解:点A(1,0)到直线x+y-2=0的距离:
d=
|1+0-2|
2
=
2
2

故选:B.
点评:本题考查点到直线的距离的求法,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线AB的方程为(a-3)x+y+2-a=0,若直线AB不经过第二象限,则a的取值范围为(  )
A、a≤1B、a≤3
C、a≤2D、a<3

查看答案和解析>>

科目:高中数学 来源: 题型:

用min{a,b}表示a,b两个实数中的最小值.已知函数f(x)=min{|log3x|,|log3(x-t)|}(t>0),若函数g(x)=f(x)-1至少有3个零点,则t的最小值为(  )
A、
1
3
B、1
C、
8
3
D、
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:

记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人不相邻且不排在两端,不同的排法共有(  )
A、720种B、960种
C、1440种D、480种

查看答案和解析>>

科目:高中数学 来源: 题型:

将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有两个房间无人选择且这两个房间不相邻的安排方式的总数为(  )
A、900B、1500
C、1800D、1440

查看答案和解析>>

科目:高中数学 来源: 题型:

要从A、B、C、D、E、F这6人中选出4人参加4×100m的接力赛;
(1)不同的参赛方式有几种;
(2)若A、B均参加且A必须跑第一棒,不同的参赛方式有几种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一扇形的中心角是120°,所在圆的半径是10cm.求:
(1)扇形的弧长;
(2)该弧所在的弓形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆的圆心M的轨迹C的方程;
(2)抛物线C上一点A(x0,4),是否存在直线m与轨迹C相交于两不同的点B,C,使△ABC的垂心为H(8,0)?若存在,求直线m的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:
x=a+4t
y=-1-2t
(t为参数),圆C:ρ=2
2
cos(θ+
π
4
)(极轴与x轴的非负半轴重合,且单位长度相同),若直线l被圆C截得的弦长为
6
5
5
,求实数a的值.

查看答案和解析>>

同步练习册答案