精英家教网 > 高中数学 > 题目详情

在直角坐标系上取两个定点,再取两个动点
(I)求直线交点的轨迹的方程;
(II)已知,设直线:与(I)中的轨迹交于两点,直线 的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

(I);(II)定点为

解析试题分析:(I)已知条件是,因此我们可以设直线交点的坐标为,把建立起联系,利用已知得到交点的轨迹方程,而这个联系就是直线的方程;(II)要证明直线过定点,应该求出的关系,而已知的是直线 的倾斜角,说明它们的斜率之和为0,设直线与轨迹的交点为,则,那么,变形得,这里可由直线与轨迹的方程联立,消去得关于的二次方程,由韦达定理得到,代入上式可得到结论.
试题解析:(I)依题意知直线的方程为:  ①,
直线的方程为:  ②,
是直线的交点,①×②得
 整理得
不与原点为重合,∴点不在轨迹M上,
∴轨迹M的方程为
(II)由题意知,直线的斜率存在且不为零,
联立方程,得,设,且
由已知,得,∴
化简得
代入得,整理得
∴直线的方程为,因此直线过定点,该定点的坐标为
考点:(I)动点转移法求轨迹方程;(II)直线和椭圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

)如图,椭圆为椭圆的顶点

(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)设点为直线上的点,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在周长为定值的DDEC中,已知,动点C的运动轨迹为曲线G,且当动点C运动时,有最小值
(1)以DE所在直线为x轴,线段DE的中垂线为y轴建立直角坐标系,求曲线G的方程;
(2)直线l分别切椭圆G与圆(其中)于A、B两点,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

查看答案和解析>>

同步练习册答案