精英家教网 > 高中数学 > 题目详情
7.若一个圆锥的侧面展开图是半圆,则这个圆锥的底面面积与侧面积的比是1:2.

分析 根据圆锥体的侧面展开图是半圆,球场底面半径r与母线长l的关系,再求它的底面面积与侧面积的比.

解答 解:设该圆锥体的底面半径为r,母线长为l,根据题意得;
2πr=πl,
∴l=2r;
所以这个圆锥的底面面积与侧面积的比是
πr2:$\frac{1}{2}$πl2=r2:$\frac{1}{2}$(2r)2=1:2.
故答案为1:2.

点评 本题考查了圆锥体的侧面积与底面积的计算问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点F1、F2,点P在椭圆上,且PF1⊥F1F2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交椭圆于A、B两点,且AB中点为M(-2,1),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=|x-3|(${2^{sin\frac{πx}{2}}}$-1)-1(-3≤x≤9)的所有零点之和为(  )
A.6B.10C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,A为双曲线的左顶点,以F1,F2为直径的圆交双曲线的一条渐近线于M,N两点,且满足∠MAN=120°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点F是抛物线y2=2px的焦点,其中p是正常数,点M的坐标为(12,8),点N在抛物线上,且满足$\overrightarrow{ON}$=$\frac{3}{4}$$\overrightarrow{OM}$,O为坐标原点.
(1)求抛物线的方程;
(2)若AB,CD都是抛物线经过点F的弦,且AB⊥CD,AB的斜率为k,且k>0,C.A两点在x轴上方,△AFC与△BFD的面积之和为S,求当k变化时S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆(x+2)2+y2=16的圆心为M,设A为圆上任一点,N(3,0),线段AN的垂直平分线交直线MA于点P,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R,则“a>b>1”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax-a,x≥a}\\{-{x}^{2}+ax-a,x<a}\end{array}\right.$.
(1)当a=2时,求函数f(x)的单调区间;
(2)若a≥4,试讨论函数y=f(x)的零点个数,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,a3+a5=16,若对任意正整数n都有a1+a2+a3+…+an=an2+bn,其中a,b为常数,则128a+2b的最小值为32.

查看答案和解析>>

同步练习册答案