精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域为(2,3),求f(x+1)定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由f(x)定义域得出f(x+1)的自变量应满足的条件是什么,从而求出f(x+1)的定义域.
解答: 解:∵f(x)的定义域为(2,3),
∴f(x+1)的自变量满足2<x+1<3;
解得1<x<2,
∴f(x+1)的定义域是(1,2).
点评:本题考查了求函数的定义域的问题,解题时应根据函数定义域的概念,进行解答,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为公差不为0的等差数列,a5和a7的等差中项为6,且a2,a4,a8成等比数列,令bn=
1
anan+1
,数列{bn}的前n项和为Tn
(Ⅰ)求an及Tn
(Ⅱ)若Tn≤λan+1,对?n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且a2+S2=31,an+1=3an-2n(n∈N*).
(Ⅰ)求证:{an-2n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形中ABCD中.AB∥CD,AB⊥BC,F为AB上的点,且BE=1,AD=AE=DC=2,将△ADE沿DE折叠到P点,使PC=PB.
(Ⅰ)求证:平面PDE⊥平面ABCD;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB上异于A,B的点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF⊥平面AEFD,如图2.
(Ⅰ)求证:AB∥平面DFC;
(Ⅱ)当三棱锥F-ABE体积最大时,求平面ABC与平面AEFD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数a0,用a0的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将a0的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数a1=m-n,然后继续对a1重复上述变换,得数a2,…,如此进行下去,卡普耶卡发现,无论a0是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系中,A,B分别是直线3ρcosθ-4ρsinθ+7=0和圆ρ=2cosθ上的动点,则A,B两点之间距离的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),若对给定的△ABC,它的三边的长a,b,c均在函数f(x)的定义域内,都有f(a),f(b),f(c)也为某三角形的三边的长,则称f(x)是△ABC的“三角形函数”,下面给出四个命题:
①函数f1(x)=x是任意三角形的“三角形函数”.
②函数f2(x)=
x
(x∈(0,+∞))是任意兰角形“三角形函数”;
③若定义在 (0,+∞)上的周期函数 f3(x)的值域也是勤f3(x),则f3(x)是任意三角形的“三角形函数”;
④若函数f4(x)=x3-3x+m在区间或(
2
3
4
3
)上是某三角形的“三角形函数”,则m的取值范是(
62
27
,+∞).
以上命题正确的有
 
(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ的相关函数”.有下列关于“λ的相关函数”的结论:
①f(x)=0是常数函数中唯一一个“λ的相关函数”;
②f(x)=x2是一个“λ的相关函数”;
③“
1
2
的相关函数”至少有一个零点.
其中正确结论的是
 

查看答案和解析>>

同步练习册答案