分析 由函数的最值求出A,由周期求出ω,由特殊点的坐标求出φ的值,再代值计算即可.
解答 解:由图象可得到A=2,$\frac{T}{2}$=$\frac{5π}{12}$+$\frac{π}{12}$=$\frac{π}{2}$,
∴T=π,
∴ω=$\frac{2π}{π}$=2,
当x=$\frac{5π}{12}$-$\frac{π}{12}$=$\frac{π}{6}$时,f(x)=2,
∴$\frac{2}{sin(2x+φ)}$=2,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴f(x)=$\frac{2}{sin(2x+\frac{π}{6})}$,
∴f($\frac{π}{4}$)=$\frac{2}{sin(\frac{π}{2}+\frac{π}{6})}$=$\frac{4\sqrt{3}}{3}$,
故答案为:$\frac{4\sqrt{3}}{3}$
点评 本题主要考查利用图象特征,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{30}}}{10}$ | B. | $\frac{{\sqrt{30}}}{15}$ | C. | $\frac{{\sqrt{30}}}{30}$ | D. | $\frac{{\sqrt{15}}}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年浙江普通高校招生学业水平考试数学试卷(解析版) 题型:选择题
设双曲线
的左、右焦点分别为
,
,以
为圆心,
为半径的圆与双曲线在第一、二象限内依次交于
,
两点,若
,则该双曲线的离心率是( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com