精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2asin(2x-$\frac{π}{3}$)+b(a>0)的定义域为[0,$\frac{π}{2}$],值域为[-$\sqrt{3}$-1,1],试求a,b的值.

分析 根据正弦函数的图象和性质即可得到$\left\{\begin{array}{l}{2a+b=1}\\{-2a×\frac{\sqrt{3}}{2}+b=-\sqrt{3}-1}\end{array}\right.$,解得即可.

解答 解:函数f(x)=2asin(2x-$\frac{π}{3}$)+b(a>0)的定义域为[0,$\frac{π}{2}$],
∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴-$\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{3}$)≤1,
∵函数f(x)值域为[-$\sqrt{3}$-1,1],
∴$\left\{\begin{array}{l}{2a+b=1}\\{-2a×\frac{\sqrt{3}}{2}+b=-\sqrt{3}-1}\end{array}\right.$,
解得a=1,b=-1

点评 本题考查了正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.解方程组:$\left\{\begin{array}{l}{x+y+z=3…(1)}\\{{x}^{2}+{y}^{2}+{z}^{2}=3…(2)}\\{{x}^{3}+{y}^{3}+{z}^{3}=3…(3)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=$\sqrt{2}$,b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=cos(2x+$\frac{π}{4}$)的对称中心,对称轴方程,递减区间和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m-x=$\sqrt{5}$+2,求$\frac{{m}^{2x}-1{+m}^{-2x}}{{m}^{-3x}{+m}^{3x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设n(S)表示集合S中元素的个数,定义A•B=$\left\{\begin{array}{l}{n(A),n(A)≥n(B)}\\{n(B),n(A)<n(B)}\end{array}\right.$,已知A={x||x-a|=1},B={x||x2-2x-3|=a-1},若A•B=2,则实数a的范围(-∞,1]∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足$\frac{acosC+bcosA}{c}$=2cosC,则角C的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线C与椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1有公共焦点,且C的一条渐近线方程为x+$\sqrt{3}$y=0,则C的方程为$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

同步练习册答案