分析 由等比数列写出bn,Tn的公式,再结合an+1+bn=n-1写出Sn的公式,从而求得$\frac{{S}_{n}}{n}$+λ•$\frac{{T}_{n}}{n}$的表达式,从而解得.
解答 解:∵数列{bn}是首项为-$\frac{3}{4}$,公比为$\frac{1}{2}$的等比数列,
∴bn=-$\frac{3}{4}$•$\frac{1}{{2}^{n-1}}$=-$\frac{3}{{2}^{n+1}}$,
Tn=$\frac{-\frac{3}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=-$\frac{3}{2}$(1-$\frac{1}{{2}^{n}}$),
又∵an+1+bn=n-1,
∴an+1=-bn+n-1
=$\frac{3}{{2}^{n+1}}$+n-1,
∴an=$\frac{3}{{2}^{n}}$+n-2,
Sn=3(1-$\frac{1}{{2}^{n}}$)+$\frac{n(n-1)}{2}$-2n,
∴$\frac{{S}_{n}}{n}$+λ•$\frac{{T}_{n}}{n}$
=$\frac{1}{n}$[3(1-$\frac{1}{{2}^{n}}$)+$\frac{n(n-1)}{2}$-2n-λ$\frac{3}{2}$(1-$\frac{1}{{2}^{n}}$)]
=$\frac{1}{n}$$\frac{3}{2}$(2-λ)(1-$\frac{1}{{2}^{n}}$)+$\frac{n-1}{2}$-2,
∵数列{$\frac{{S}_{n}}{n}$+λ•$\frac{{T}_{n}}{n}$}为等差数列,
∴2-λ=0,
故λ=2.
故答案为:2.
点评 本题考查了等比数列与等差数列的性质的判断与应用,同时考查了转化思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -3 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | (0,2] | C. | (-∞,-2] | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{16}$ | B. | $\frac{25}{16}$ | C. | -$\frac{7}{16}$ | D. | -$\frac{25}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com