精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-3x+b
3x+1+a
是奇函数.
(1)求a,b的值;
(2)用函数单调性的定义证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
考点:函数恒成立问题,函数单调性的判断与证明
专题:综合题,函数的性质及应用
分析:(1)利用奇函数定义f(x)=-f(x)中的特殊值求a、b的值;
(2)按按取点,作差,变形,判断的过程来即可.
(3)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.
解答: (1)解:因为f(x)是奇函数,函数的定义域为R,所以f(0)=0,f(-1)+f(1)=0
所以
-1+b
3+a
=0,
-
1
3
+b
1+a
+
-3+b
9+a
=0,
所以a=3,b=1;
(2)证明:设x1<x2,则f(x1)-f(x2)=
2(3x2-3x1)
3(3x1+1)(3x2+1)

因为y=3x在实数集上是增函数且函数值恒大于0,故f(x1)-f(x2)>0.
所以f(x)在R上是单调减函数
(3)解:由(2)知f(x)在(-∞,+∞)上为减函数.
又因为f(x)是奇函数,
所以f(t2-2t)+f(2t2-k)<0
等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因为f(x)为减函数,由上式可得:t2-2t>k-2t2
即对一切t∈R有:3t2-2t-k>0,
从而判别式△=4+12k<0⇒k<-
1
3

所以k的取值范围是k<-
1
3
点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b≥2,现有下列不等式:①b2>3b-a;②1+
4
ab
2
a
+
2
b
;③ab>a+b;④loga3>logb3.其中正确的是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
-
2x
2x+1
(a为常数)
(1)若y=f(x)为奇函数,求出a的值;
(2)在满足(1)的条件下,探索y=f(x)的单调性,并利用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,4),
b
=(5,12)
(1)求
a
b

(2)求|
a
|和|
b
|以及
a
b
所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
2
+alnx-2(a>0).
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=-x+2平行,求函数y=f(x)的极值;
(Ⅱ)若对于?x∈(0,+∞)都有f(x)>-2成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-2-lnx(a∈R).
(Ⅰ)若函数f(x)在点(e,f(e))(其中e为自然对数的底数)处的切线与x轴平行,求a的值;
(Ⅱ)当a∈R时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-2m-2)xm-1为偶函数,且在区间(0,+∞)上是单调递减函数,
(1)求函数f(x)的解析式;
(2)讨论函数F(x)=a
f(x)
-
b
xf(x)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.直线l的参数方程是:
x=
2
2
t+m
y=
2
2
t.
(t是参数)
(1)求曲线C和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=
14
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x+
π
6
),x∈R.
(1)求f(x)的最小正周期、单调区间和对称轴.
(2)当x∈[-
π
4
π
4
]时,求f(x)值域.

查看答案和解析>>

同步练习册答案