精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex
x-a
,(其中常数a>0)
(Ⅰ)当a=1时,求曲线在(0,f(0))处的切线方程;
(Ⅱ)若存在实数x∈(a,2]使得不等式f(x)≤e2成立,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,函数恒成立问题
专题:导数的综合应用
分析:(Ⅰ)把a=1代入函数解析式,求出f(0),求出原函数的导函数,再求出f′(1),则曲线在(0,f(0))处的切线方程可求;
(Ⅱ)求出原函数的导函数,得到导函数的零点,由导函数的零点对定义域分段,由导函数在各区间段内的符号得到原函数的单调性,把存在实数x∈(a,2]使不等式
f(x)≤e2成立转化为在(a,2]上f(x)mine2成立,然后由a+1≤2和a+1>2分类求出f(x)的最小值,由最小值小于等于e2求解a的取值范围.
解答: 解:(Ⅰ)当a=1时,f(x)=
ex
x-1
f(x)=
ex(x-2)
(x-1)2

∴f(0)=-1,f′(0)=-2,
∴曲线在(0,f(0))处的切线方程为:2x+y+1=0;
(Ⅱ)函数的定义域{x|x≠a}.
由f(x)=
ex
x-a
,得f(x)=
ex[x-(a+1)]
(x-a)2

令f'(x)=0,得x=a+1,
当x∈(-∞,a),(a,a+1)时,f′(x)0.
∴f(x)在(-∞,a),(a,a+1)递减,在(a+1,+∞)递增.
若存在实数x∈(a,2]使不等式f(x)≤e2成立,
只需在(a,2]上f(x)mine2成立,
①若a+1≤2,即0<a≤1时,f(x)min=f(a+1)=ea+1e2
∴a+1≤2,即a≤1,
∴0<a≤1;
②若a+1>2,即1<a<2,f(x)min=f(2)=
e2
2-a
e2

解得a≤1,
又1<a<2,
∴a∈∅.
综上,a的取值范围是(0,1].
点评:本题考查利用导数研究曲线上某点处的切线方程,考查了利用导数研究函数的最值,体现了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在n×n个实数组成的n行n列数表中,先将第一行的所有空格依次填上1,2,22,23…2n-1,再将首项为1公比为q的数列{an}依次填入第一列的空格内,然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规律填写其它空格.
第1列第2列第3列第4列第n列
第1行 1  2  22232n-1
第2行q
第3行 q2
第4行 q3
第n行 qn-1
(Ⅰ)设第2行的数依次为B1,B2,B3…Bn.试用n,q表示B1+B2+B3+…+Bn的值;
(Ⅱ)设第3行的数依次为C1,C2,C3…Cn,记为数列{Cn}.
①求数列{Cn}的通项Cn
②能否找到q的值使数列{Cn}的前m项C1,C2,C3…Cm(m≥3,m∈N+)成等比数列?若能找到,m的值是多少?若不能找到,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,求下列各式的值.
(1)
670sinα+4cosα
2sinα-5cosα
;       
(2)
1
2sin2α-8cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次数学复习检测中,老师从做过的A,B两套试卷中共挑选出6道试题,若这6道试题被随机地平均分给甲、乙、丙三位同学练习,且甲同学至少有一道试题来自A试卷的概率是
3
5

(1)求这6道试题来自A,B试卷的各有几道试题;
(2)若随机变量X表示甲同学的试题中来自A的试题数,求X分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过点A(0,-2),B(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)直线l过点P(2,0),且与圆C交于M,N两点,若|MN|=4
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
1
(n+1)2
(n∈N+),记f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,求下列各式的值
(1)
3sinα-2cosα
4cosα+3sinα
;     
(2)sinαcosα

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4;将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求证:AB⊥DE;
(2)若点F为BE的中点,求直线AF与平面ADE所成角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x2-ax+2)(a>0且a≠1)在(2,+∞)上为增函数,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案