精英家教网 > 高中数学 > 题目详情
17.已知f(x)=2sin$\frac{π}{2}$x,集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一列,得到数列{an},n∈N*
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{{{a}^{2}}_{n+1}}^{\;}}$,设数列{bn}的前n项和为Tn,求证Tn<$\frac{1}{4}$.

分析 (1)根据题意求出数列的通项公式.
(2)利用(1)的结论,进一步利用放缩法和裂项相消法求出结果.

解答 解:(1)f(x)=2sin$\frac{π}{2}$x,集合M={x||f(x)|=2,x>0},
则:$\frac{π}{2}x=kπ+\frac{π}{2}$
解得:x=2k+1(k∈Z),
所以M={x|x=2k+1,k∈Z}
把M中的元素从小到大依次排成一列,得到数列{an},
∵M={1,3,5,…,2k+1},k∈Z,
所以:an=2n-1.
证明:(2)记bn=$\frac{1}{{a}_{n+1}^{2}}$,数列{bn}的前n项和为Tn
${b}_{n}=\frac{1}{{{a}_{n+1}}^{2}}=\frac{1}{(2n+1)^{2}}$$<\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$
所以:Tn=b1+b2+…+bn$<\frac{1}{4}(1-\frac{1}{2}$+$\frac{1}{2}$$-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$

点评 本题考查的知识要点:数列的通项公式的求法,利用裂项相消法和放缩法求数列的和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若(x6$+\frac{1}{x\sqrt{x}}$)n的展开式中含有常数项,则n的最小值等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(1+$\frac{2}{x-2}$)(1+lnx),g(x)=x-4-2lnx.
(1)求函数g(x)的零点个数,并说明理由;
(2)设x1∈(0,2),x2∈(2,+∞),求证:f(x2)-f(x1)>$\frac{1}{2}$(e2-$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=(  )
A.-1B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.$(α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t为参数).
(Ⅰ)求曲线M和N的直角坐标方程;
(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:选择题

已知的内角所对的边分别为,若,则角的度数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要从由n名成员组成的小组中任意选派3人去参加某次社会调查.若在男生甲被选中的情况下,女生乙也被选中的概率为0.4,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了解某校高三毕业生报考体育专业学生的体重(单位:千克),将他们的体重数据整理后得到如下频率分布直方图.已知图中从左到右前3个小组的频率之比为1:2:3,其中第二小组的频数为12.
(Ⅰ)求该校报考体育专业学生的总人数n;
(Ⅱ)已知A、a是该校报考体育专业的两名学生,A的体重小于55千克,a的体重不小于70千克.现从该校报考体育专业的学生中按分层抽样分别抽取小于55千克和不小于70千克的学生共6名,然后在从这6人中抽取体重小于55千克的学生2人,体重不小于70千克的学生1人组成3人训练组,求A在训练组且a不在训练组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的公比q=3,前3项和${S_3}=\frac{13}{9}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在$x=\frac{π}{6}$处取得最大值为a4,求函数f(x)在区间$[-\frac{π}{12},\frac{π}{2}]$上的值域.

查看答案和解析>>

同步练习册答案