精英家教网 > 高中数学 > 题目详情
4.如图,四棱锥P-ABCD中,PA⊥面ABCD,∠ABC=120°,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,G为线段PC上的点.
(Ⅰ)证明:BD⊥面PAC;
(Ⅱ)若G满足PC⊥面BGD,求$\frac{PG}{GC}$ 的值;
(Ⅲ)若G是PC的中点,求DG与APC所成的角的正切值.

分析 (Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.
(Ⅱ)先证 PC⊥OG,且PC=$\sqrt{15}$由△COG∽△CAP,可得$\frac{GC}{AC}=\frac{OC}{PC}$,解得GC的值,可得PG
=PC-GC 的值,从而求得$\frac{PG}{GC}$ 的值.
(Ⅲ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.

解答 (Ⅰ)证明:∵在四棱锥P-ABCD中,PA⊥面ABCD,∴PA⊥BD. 
∵AB=BC=2,AD=CD=$\sqrt{7}$,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.
而PA∩AC=A,∴BD⊥面PAC.
(Ⅱ)解:若G满足PC⊥面BGD,∵OG?平面BGD,∴PC⊥OG,且 PC=$\sqrt{15}$
由△COG∽△CPA,可得$\frac{GC}{AC}=\frac{OC}{PC}$,解得GC=$\frac{2\sqrt{15}}{5}$,
∴PG=PC-GC=$\sqrt{15}-\frac{2\sqrt{15}}{5}$=$\frac{3\sqrt{15}}{5}$,∴$\frac{PG}{GC}$=$\frac{3}{2}$.
(Ⅲ)解:若G是PC的中点,O为AC的中点,则GO平行且等于$\frac{1}{2}$PA,故由PA⊥面ABCD,可得GO⊥面ABCD,
∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.
由题意可得,GO=$\frac{1}{2}$PA=$\frac{\sqrt{3}}{2}$
△ABC中,由余弦定理可得AC2=AB2+BC2-2AB•BC•cos∠ABC=4+4-2×2×2×cos120°=12,
∴AC=2$\sqrt{3}$,OC=$\sqrt{3}$.
∵直角三角形COD中,OD=2,
∴直角三角形GOD中,tan∠DGO=$\frac{OD}{OG}$=$\frac{4\sqrt{3}}{3}$.

点评 本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2$\sqrt{17}$.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.若EB=2,则四边形GEFH的面积为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P(1,1)为椭圆$\frac{x^2}{2}+\frac{y^2}{4}=1$内一定点,经过P引一弦,使此弦在P(1,1)点被平分,则此弦所在的直线方程是2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{3}$x3+x2+ax和函数g(x)=e-x,若对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-2x+4y-4=0.
(1)求过点(4,0)圆的切线方程.
(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且以AB为直径的圆过原点.若存在,求出直线m的方程; 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=px+$\frac{q}{x}$(实数p、q为常数),且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}}$]上的单调性,并用函数单调性定义证明;
(3)当x∈(0,$\frac{1}{2}}$]时,函数f(x)≥2-m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sin(x-$\frac{1}{2}$),当0<x<1时,不等式f(x)•${log_2}(x-{2^m}+\frac{5}{4})$>0恒成立,则实数m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{x-1}$+$\sqrt{{2}^{x}-1}$的定义域是(  )
A.[0,+∞)B.(1,+∞)C.[0,1)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(α)=$\frac{sin(π-α)cos(2π-α)}{{sin(\frac{π}{2}+α)tan(2π+α)}}$,求f($\frac{31π}{3}$).

查看答案和解析>>

同步练习册答案