精英家教网 > 高中数学 > 题目详情
9.已知函数f(2x)的定义域为[$\frac{3}{2}$,3],则函数y=$\frac{f(x)}{\sqrt{5-x}}$的定义域为(  )
A.[$\frac{3}{2}$,5)B.[$\frac{3}{2}$,3]C.[3,5)D.[3,5]

分析 由函数f(2x)的定义域求得函数f(x)的定义域,再由分母中根式内部的代数式大于0求得x的范围,取交集得答案.

解答 解:∵f(2x)的定义域为[$\frac{3}{2}$,3],则x∈[$\frac{3}{2}$,3],
∴2x∈[3,6],即函数f(x)的定义域为[3,6],
又由5-x>0,得x<5.
∴函数y=$\frac{f(x)}{\sqrt{5-x}}$的定义域为[3,5).
故选:C.

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p≠0)的焦点F在直线2x+y-2=0上.
(1)求抛物线C的方程;
(2)已知点P是抛物线C上异于坐标原点O的任意一点,抛物线在点P处的切线分别与x轴、y轴交于点B,E,设$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求证:λ为定值;
(3)在(2)的条件下,直线PF与抛物线C交于另一点A,请问:△PAB的面积是否存在最小值?若存在,请求出最小值及此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=-x3+3x(x<0)的极值点为x0,则x0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,若$\overrightarrow{a}$=$\overrightarrow{OD}$,$\overrightarrow{b}$=$\overrightarrow{OE}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,点P是以点O为圆心的圆弧$\widehat{DE}$上一动点,设$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OE}$(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x3-4x2+4x的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知如图平行四边形ABCD中,点E是CD的中点,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(写出解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.动点P在椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,Q点在圆C:x2+(y-5)2=1上移动,试求PQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设点P为圆C1:x2+y2=2上的动点,过点P作x轴的垂线,垂足为Q,点M满足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求点M的轨迹C2的方程;
(2)过直线x=2上的点T作圆C1的两条切线,设切点分别为A、B,若直线AB与(1)中的曲线C2交与C、D两点,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,以原点O为圆心,b为半径的圆与直线x-y+2=0相切,A、B分别是椭圆的左、右顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P与A,B均不重合,直线PA,PB的斜率分别为k1,k2,求k1•k2的值;
(Ⅲ)设M为过P且垂直于x轴的直线上的点,若$\frac{|OP|}{|OM|}$=λ($\frac{\sqrt{3}}{3}$≤λ<1),求点M的轨迹方程.

查看答案和解析>>

同步练习册答案