精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+|x-a|,试判断函数f(x)的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性的定义,分别进行判断即可.
解答: 解:∵f(x)=x2+|x-a|,
∴f(-x)=x2+|-x-a|=x2+|x+a|,
若函数为偶函数,则f(-x)=f(x),
即x2+|x-a|=x2+|x+a|,
∴|x-a|=|x+a|,解得a=0,
若a≠0,则x2+|x-a|≠x2+|x+a|,即f(-x)≠f(x),且f(-x)≠-f(x),
∴此时函数为非奇非偶函数,
即a=0时,函数为偶函数,
a≠0时,函数为非奇非偶函数.
点评:本题主要函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键,注意要对a进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是(  )
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[e,2e]
D、(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,cosC=
3
10

(Ⅰ)若
CB
CA
=
9
2
,求c的最小值;
(Ⅱ)设向量
x
=(2sinB,-
3
)
y
=(cos2B,1-2sin2
B
2
)
,且
x
y
,求sin(B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-
1
2
,2an=an-1-n-1(n≥2,n∈N*),设bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)若cn=(
1
2
)n-an
,Pn为数列{
cn2+cn+1
cn2+cn
}
的前n项和,求不超过P2014的最大的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反三角函数的形式表示下列各式中的x值:
(1)sinx=
1
7
,x∈[
π
2
,π
];
(2)cosx=-
5
5
,x∈(-π,0);
(3)tanx=-
2
3
,x∈(
π
2
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:
(1)(lg5)2+lg2•lg5+lg20-
4(-4)2
6125
+2(1+
1
2
log25)

(2)sin50°•(1+
3
tan10°)

查看答案和解析>>

科目:高中数学 来源: 题型:

某著名汽车公司2013年年初准备将10亿元资金投资到“车型更新”项目上,现有两个项目供选择:
项目A:新能源汽车,据市场调研,投资到该项目上,到年底可能获利40%,也可能亏损80%,且这两种情况发生的概率分别为
3
4
1
4

项目B:城市越野车,据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为
3
5
1
6
7
30

(Ⅰ) 针对以上两个投资项目,请你为投资公司选择一个合理且较为稳妥的项目,并说明理由;
(Ⅱ) 假设每年两个项目的投资环境及预期获利均不变,该投资公司按照你所选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:lg2=0.3010)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-2x-3,x≤0
x+1,x>0
,若f(a)=5,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上是单调函数,且满足对任意x∈R,都有f[f(x)-3x]=4,则f(4)的值是(  )
A、85B、82C、80D、76

查看答案和解析>>

同步练习册答案