精英家教网 > 高中数学 > 题目详情
10.设集合P={1,2,3,4},Q={x|x≤2},则P∩Q=(  )
A.{1,2}B.{3,4}C.{1}D.{-2,-1,0,1,2}

分析 由P与Q,求出两集合的交集即可.

解答 解:∵P={1,2,3,4},Q={x|x≤2},
∴P∩Q={1,2},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若等差数列{an}中,a3+a7-a10=8,a11-a4=4,则a6+a7+a8等于(  )
A.34B.35C.36D.37

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)=-$\frac{5}{2}$x+b在区间(0,2)有两个不等实根,求实数b的取值范围;
(3)对于n∈N+,证明:$\frac{2}{{1}^{2}}+\frac{3}{{2}^{2}}+\frac{4}{{3}^{2}}+…+\frac{n+1}{{n}^{2}}>ln(n+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为A<G.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.曲线C:f(x)=x3-2x2-x+1,点P(1,0),求过点P的切线l与C围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=λ1($\frac{a}{3}{x}^{3}$+$\frac{b-1}{2}$x2+x)+λ2x•3x,(a,b∈R且a>0).
(1)当λ1=1,λ2=0时,若已知x1,x2是函数f(x)的两个极值点,且满足:x1<1<x2<2,求证:f′(-1)>3;
(2)当λ1=0,λ2=1时,
①求实数y=f(x)-3(1+ln3)x(x>0)的最小值;
②对于任意正实数a,b,c,当a+b+c=3时,求证:a•3a+b•3b+c•3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax2+1的定义域为R,其导函数为f′(x).
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=1,曲线y=f(x)在x=0处的切线为直线l,求直线l与函数g(x)=f′(x)+2x及直线x=0、x=1围成的封闭区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.运行如图的程序,输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中正确的是(  )
A.共线向量的夹角为0°或180°
B.长度相等的向量叫做相等向量
C.共线向量就是向量所在的直线在同一直线上
D.零向量没有方向

查看答案和解析>>

同步练习册答案