精英家教网 > 高中数学 > 题目详情
11.下列结论正确的是(  )
A.当$x∈(0,\frac{π}{2})$时,$sinx+\frac{1}{sinx}≥2$B.当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$
C.当x≥2时,$x+\frac{1}{x}$的最小值为2D.当0<x≤2时,$x-\frac{1}{x}$无最大值

分析 A.当$x∈(0,\frac{π}{2})$时,sinx∈(0,1),利用基本不等式的性质即可判断出正误.
B.当x>0时,利用基本不等式的性质即可判断出正误.
C.令f(x)=x+$\frac{1}{x}$,利用导数研究其单调性极值与最值即可判断出正误.
D.令f(x)=x-$\frac{1}{x}$,利用导数研究其单调性极值与最值即可判断出正误.

解答 解:A.当$x∈(0,\frac{π}{2})$时,sinx∈(0,1),∴$sinx+\frac{1}{sinx}$>2,因此等号不成立;
B.当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$$\sqrt{\sqrt{x}•\frac{1}{\sqrt{x}}}$=2,当且仅当x=1时取等号,因此正确;
C.令f(x)=x+$\frac{1}{x}$,∵x≥2,∴${f}^{′}(x)=1-\frac{1}{{x}^{2}}$=$\frac{{x}^{2}-1}{{x}^{2}}$>0,∴函数f(x)单调递增,∴f(x)≥f(2)=$\frac{5}{2}$>2,因此不正确.
D.令f(x)=x-$\frac{1}{x}$,∵0<x≤2,∴f′(x)=1+$\frac{1}{{x}^{2}}$>0,∴函数f(x)单调递增,∴f(x)≤f(2)=$\frac{3}{2}$,为最大值,因此不正确.
故选:B.

点评 本题考查了基本不等式的性质、利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知由曲线y=$\sqrt{2x}$,直线y=4-x以及x轴所围成的图形的面积为S.
(1)画出图象;
(2)求面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面内给定三个向量$\vec a=({3,2}),\vec b=({-1,2}),\vec c=({4,1})$,
(1)求满足$\vec a=m\vec b+n\vec c$的实数m,n;
(2)若$({\vec a+k\vec c})∥({2\vec b-\vec a})$,求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.无穷等差数列{an}的各项均为整数,首项为a1,公差为d,Sn是其前n项和,3,21,15是其中的三项,给出下列命题,真命题有(  )
①对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项.
②对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项.
③存在满足条件的数列{an},使得对任意的n∈N*,S2n=4Sn成立.
A.①③B.①②C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如果关于x的方程$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$的解不大于1,且m是一个正整数,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a=$\int_{-1}^1{(sinx+1)dx}$,则二项式${(a{x^2}-\frac{1}{x})^6}$展开式中的第6项的系数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,已知对任意正整数n,都有Sn+2=2an成立.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2n-1}{a_n}(n∈{N^*})$,数列{bn}的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复平面内表示复数i(1-2i)的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个类比结论:
(1)(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn
(2)loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;
(3)(a+b)2=a2+2ab+b2与($\overrightarrow{a}$+$\overrightarrow{b}$)2类比,则有($\overrightarrow{a}$+$\overrightarrow{b}$)2=$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2
期中结论正确的个数是(  )
A..3B..2C..1D..0

查看答案和解析>>

同步练习册答案