精英家教网 > 高中数学 > 题目详情
学校体育组新买2个同样篮球,3个同样排球,从中取出4个发放给高一4个班,每班1个,则共有
 
种不同的发放方法.
考点:排列、组合及简单计数问题
专题:排列组合
分析:根据题意,分2种情况讨论,①、将3个排球、1个篮球分给4个班,②、将2个排球、2个篮球分给4个班,分别求出每种情况的发放方法数目,由分类计数原理,计算可得答案.
解答: 解:根据题意,分2种情况讨论,
①、将3个排球、1个篮球分给4个班,在4个班中取出3个,分得排球剩余1个班分得篮球即可,则有C43=4种情况,
②、将2个排球、2个篮球分给4个班,在4个班中取出2个,分得排球剩余2个班分得篮球即可,则有C42=6种情况,
则共有6+4=10种发放方法,
故答案为:10
点评:本题考查排列、组合的应用,注意篮球、排球之间是相同的,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意的n∈N*,数列{an}满足
a1-1
21+1
+
a2-2
22+1
+…+
an-n
2n+1
=n+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对于n≥2,
2
a2
+
2
a3
+…+
2
an+1
<1-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图,其功能是输入x的值,输出相应的y值,若要使输入的x值与输出的y值相等,则这样的x值有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若{1,2,3}={1,2x,y},则x=
 
,y=
 
或x=
 
,y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,则输出的结果S为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}的前n项和为Sn=2an-2(n∈N+),
(1)求{an}的通项公式;
(2)若bn=
1
log4anlog4an+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2<4,x∈Z},B={x|x≤3,x∈N},定义A•B={(x,y)|x∈A∩B,y∈A∪B},则A•B的非空真子集的个数共有(  )
A、8B、10
C、1024D、1022

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:f(x)=2x-lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

若单位圆⊙O的内接四边形ABCD中,AC=2,∠BAD=60°,则四边形ABCD的面积取值范围为
 

查看答案和解析>>

同步练习册答案