【题目】已知函数,
(1)求f(x)的单调递增区间;
(2)设△ABC的三个内角A,B,C的对边分别为a,b,c,若且a=2时,求△ABC周长的最大值.
【答案】(1)f(x)的单调递增区间:[kπ,kπ],(k∈Z)(2)9
【解析】
利用三角函数恒等变换的应用化简函数解析式可得=sin(2x),
(1)利用正弦函数的单调增区间和整体角思维,即可得解;
(2)根据题意,可求得,利用余弦定理和基本不等式求得的最大值,进而求得三角形周长的最大值.
因为函数sin2x=sin(2x),
(1)令2kπ2x2kπkπx≤kπ,(k∈Z);
∴f(x)的单调递增区间:[kπ,kπ],(k∈Z);
(2)sin(2A)sin(2A)=1;
∵0<A<π∴2AA;
由余弦定理可知a2=b2+c2﹣2bccosA=b2+c2﹣bc=(b+c)2﹣3bc≥(b+c)2﹣3,
当且仅当b=c时等号成立.
于是b+c≤2a=6.故△ABC周长的最大值为9.
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆的另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于,两点,求的面积的最大值及此时内切圆半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古印度“汉诺塔问题”:一块黄铜平板上装着三根金铜石细柱,其中细柱上套着个大小不等的环形金盘,大的在下、小的在上.将这些盘子全部转移到另一根柱子上,移动规则如下:一次只能将一个金盘从一根柱子转移到另外一根柱子上,不允许将较大盘子放在较小盘子上面.若柱上现有个金盘(如图),将柱上的金盘全部移到柱上,至少需要移动次数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是( )
A. (0,1) B. (1,2) C. (2,3) D. (3,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=,设△ABC的面积为S1,正方形的面积为S2.
(1)用a,表示S1和S2;
(2)当a固定,变化时,求取最小值时的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com