【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
科目:高中数学 来源: 题型:
【题目】已知圆经过椭圆: 的两个焦点和两个顶点,点, , 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .
(Ⅰ)求椭圆的方程;
(Ⅱ)证明:直线过定点.
【答案】(Ⅰ).(Ⅱ)直线过定点.
【解析】【试题分析】(I)根据圆的半径和已知 ,故,由此求得椭圆方程.(II)设出直线的方程,联立直线方程与椭圆方程,写出韦达定理,写出的斜率并相加,由此求得直线过定点.
【试题解析】
(Ⅰ)圆与轴交点即为椭圆的焦点,圆与轴交点即为椭圆的上下两顶点,所以, .从而,
因此椭圆的方程为: .
(Ⅱ)设直线的方程为.
由,消去得.
设, ,则, .
直线的斜率 ;
直线的斜率 .
.
由的平分线在轴上,得.又因为,所以,
所以.
因此,直线过定点.
[点睛]本小题主要考查椭圆方程的求解,考查圆与椭圆的位置关系,考查直线与圆锥曲线位置关系. 涉及直线与椭圆的基本题型有:(1)位置关系的判断.(2)弦长、弦中点问题.(3)轨迹问题.(4)定值、最值及参数范围问题.(5)存在性问题.常用思想方法和技巧有:(1)设而不求.(2)坐标法.(3)根与系数关系.
【题型】解答题
【结束】
21
【题目】已知函数(,且).
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数对任意的都有,且.
(1)求函数的解析式;
(2)设函数.
①若存在实数,,使得在区间上为单调函数,且取值范围也为,求的取值范围;
②若函数的零点都是函数的零点,求的所有零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.
(1)试建立每件的销售价格(单位:元)与周次之间的函数解析式;
(2)若此服装每件每周进价(单位:元)与周次之间的关系为,,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为的正方形,是的中点,点沿着路径在正方形边上运动所经过的路程为,的面积为.
(1)求的解析式及定义域;
(2)求面积的最大值及此时点位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数且点在函数的图象上.
(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;
(2)求不等式的解集;
(3)若方程有两个不相等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标平面中, 的两个顶点为,平面内两点、同时满足:①;②;③.
(1)求顶点的轨迹的方程;
(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.
①求四边形的面积的最小值;
②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com