精英家教网 > 高中数学 > 题目详情
7.在△ABC中,若D为BC 的中点,则有$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,将此结论类比到四面体中,在四面体 A-BCD中,若G为△BCD的重心,则可得一个类比结论:$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})$.

分析 “在△ABC中,D为BC的中点,则有$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,平面可类比到空间就是“△ABC”类比“四面体A-BCD”,“中点”类比“重心”,可得结论.

解答 解:由“△ABC”类比“四面体A-BCD”,“中点”类比“重心”有,
由类比可得在四面体A-BCD中,G为△BCD的重心,则有$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})$.
故答案为:$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})$.

点评 本题考查了从平面类比到空间,属于基本类比推理.利用类比推理可以得到结论、证明类比结论时证明过程与其类比对象的证明过程类似或直接转化为类比对象的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知命题p:曲线$\frac{{x}^{2}}{a-3}$-$\frac{{y}^{2}}{6-a}$=1为双曲线,命题q:函数f(x)=x2-alnx在(2,3)上是增函数,若p∨(¬q)为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若如框图所给的程序运行结果为S=28,那么判断框中应填入的条件是(  )
A.k<7?B.k≤7?C.k>7?D.k≥7?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数g(x)=ln(1+x)-x在[0,+∞)上的最大值;
(3)设a>1,b>0,求证:$\frac{1}{a+b}<ln\frac{a+b}{b}<\frac{a}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=a+\frac{1}{{{4^x}-1}}$的图象关于原点对称,则实数a值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中,a1=1,a2=m(m≠-1),前n项和Sn满足$\frac{1}{S_n}=\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}(n≥2)$.
(1)求a3(用m表示);
(2)求证:数列{Sn}是等比数列;
(3)若m=1,现按如下方法构造项数为2k的有穷数列{bn}:当n=1,2,…,k时,bn=a2k-n+1;当n=k+1,k+2,…,2k时,bn=anan+1,记数列{bn}的前n项和Tn,试问:$\frac{{{T_{2k}}}}{T_k}$是否能取整数?若能,请求出k的取值集合;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tan(α-β)=3,tanβ=4,则tanα=$-\frac{7}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若圆心在x轴上的圆C同时经过椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F,上顶点B和右顶点A,则椭圆Γ的离心率为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=ax-ex在区间(1,+∞)上单调递减,则实数a的取值范围是(-∞,e].

查看答案和解析>>

同步练习册答案