精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|x+1|+|x-m|(m>0).
(1)若f(x)≥5恒成立,求m的取值范围;
(2)在(1)的条件下,记m的最小值是m0,若$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$=m0,则当a,b,c取何值时,a2+4b2+9c2取得最小值,并求出该最小值.

分析 (1)求出函数的最小值,利用f(x)≥5恒成立,得到关于m的不等式,即可求m的取值范围;
(2)由柯西不等式可得($\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$)(a2+4b2+9c2)≥(1+4+9)2,即可得出结论.

解答 解:(1)f(x)=|x+1|+|x-m|≥|x+1-x+m|=|1+m|,
∵f(x)≥5恒成立,
∴|1+m|≥5,
∴1+m≤-5或1+m≥5,
∵m>0,
∴m≥4;
(2)m的最小值是m0=4,∴$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$=4,
由柯西不等式可得($\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$)(a2+4b2+9c2)≥(1+4+9)2
∴a2+4b2+9c2≥49,当且仅当$\frac{\frac{1}{a}}{a}=\frac{\frac{2}{b}}{2b}=\frac{\frac{3}{c}}{3c}$,
即|a|=|b|=|c|=$\frac{\sqrt{14}}{2}$时a2+4b2+9c2取得最小值49.

点评 本题着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F分别是AP,AD的中点.
(Ⅰ)求证:平面BEF⊥平面PAD;
(Ⅱ)求二面角P-BE-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果AF的倾斜角为$\frac{2π}{3}$,则|PF|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$ 的上顶点为P,$Q({\frac{4}{3},\frac{b}{3}})$ 是C上的一点,以PQ为直径的圆经过椭圆C的右焦点F.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F且与坐标不垂直的直线l交椭圆于A,B两点,在直线x=2上是否存在一点D,使得△ABD为等边三角形?若存在,求出直线l的斜率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,点A,B分别在射线l1:y=2x(x≥0),l2:y=-2x(x≥0)上运动,且S△AOB=4.
(1)求x1•x2
(2)求线段AB的中点M的轨迹方程;
(3)判定中点M到两射线的距离积是否是为定值,若是则找出该值并证明;若不是定值说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(2x2-4ax)lnx+x2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{1}{2}{x^2},g(x)=elnx$.
(Ⅰ)设函数F(x)=f(x)-g(x),求F(x)的单调区间;
(Ⅱ)若存在常数k,m,使得f(x)≥kx+m对x∈R恒成立,且g(x)≤kx+m对x∈(0,+∞)恒成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.
(ⅰ)证明f(x)≥g(x);
(ⅱ)试问:f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆x2+y2+x-y+m=0与直线x+y-3=0交于点P、Q,O为坐标原点,若OP⊥OQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C对边分别为a,b,c,且btanA,ctanB,btanB成等差数列.
(1)求角A;
(2)若a=2,试判断当bc取最大值时△ABC的形状,并说明理由.

查看答案和解析>>

同步练习册答案