11£®ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$ µÄÉ϶¥µãΪP£¬$Q£¨{\frac{4}{3}£¬\frac{b}{3}}£©$ ÊÇCÉϵÄÒ»µã£¬ÒÔPQΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²CµÄÓÒ½¹µãF£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄÓÒ½¹µãFÇÒÓë×ø±ê²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÔÚÖ±Ïßx=2ÉÏÊÇ·ñ´æÔÚÒ»µãD£¬Ê¹µÃ¡÷ABDΪµÈ±ßÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄбÂÊ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°Ñ$Q£¨{\frac{4}{3}£¬\frac{b}{3}}£©$ ´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{16}{9{a}^{2}}$+$\frac{{b}^{2}}{9{b}^{2}}$=1£¬½âµÃa2£®ÓÖP£¨0£¬b£©£¬F£¨c£¬0£©£¬$\overrightarrow{FP}$¡Í$\overrightarrow{FQ}$£¬¿ÉµÃ$\overrightarrow{FP}$•$\overrightarrow{FQ}$=0£¬ÓÖa2=b2+c2=2£¬ÁªÁ¢½âµÃb£¬c¼´¿ÉµÃ³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÔÚÖ±Ïßx=2ÉÏ´æÔÚÒ»µãD£¬Ê¹µÃ¡÷ABDΪµÈ±ßÈý½ÇÐΣ®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º£¨2k2+1£©x2-4k2x+2k2-2=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½£¬ÏÒ³¤¹«Ê½ÓëµÈ±ßÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©°Ñ$Q£¨{\frac{4}{3}£¬\frac{b}{3}}£©$ ´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{16}{9{a}^{2}}$+$\frac{{b}^{2}}{9{b}^{2}}$=1£¬½âµÃa2=2£®
ÓÖP£¨0£¬b£©£¬F£¨c£¬0£©£¬$\overrightarrow{FP}$=£¨c£¬-b£©£¬$\overrightarrow{FQ}$=$£¨\frac{4}{3}-c£¬\frac{b}{3}£©$£®
¡ß$\overrightarrow{FP}$¡Í$\overrightarrow{FQ}$£¬¡à$\overrightarrow{FP}$•$\overrightarrow{FQ}$=$\frac{4}{3}c-{c}^{2}$-$\frac{{b}^{2}}{3}$=0£¬
ÓÖa2=b2+c2=2£¬½âµÃb=c=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®
£¨2£©ÔÚÖ±Ïßx=2ÉÏ´æÔÚÒ»µãD£¬Ê¹µÃ¡÷ABDΪµÈ±ßÈý½ÇÐΣ®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º£¨2k2+1£©x2-4k2x+2k2-2=0£¬¡÷£¾0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{4{k}^{2}}{2{k}^{2}+1}$£¬x1•x2=$\frac{2{k}^{2}-2}{2{k}^{2}+1}$£¬
ÉèABµÄÖеãΪM£¨x0£¬y0£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{2{k}^{2}}{2{k}^{2}+1}$£¬y0=k£¨x0-1£©=-$\frac{k}{2{k}^{2}+1}$£®
|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}£¨{k}^{2}+1£©}{2{k}^{2}+1}$£®
¡ß¡÷DABΪµÈ±ßÈý½ÇÐΣ¬¡à|DM|=$\frac{\sqrt{3}}{2}$|AB|£¬
¼´$\sqrt{\frac{1+{k}^{2}}{{k}^{2}}}$$•\frac{2{k}^{2}+2}{2{k}^{2}+1}$=$\frac{\sqrt{3}}{2}$•$\frac{2\sqrt{2}£¨{k}^{2}+1£©}{2{k}^{2}+1}$£¬½âµÃk2=2£¬¼´k=$¡À\sqrt{2}$£®
¹ÊÔÚÖ±Ïßx=2ÉÏ´æÔÚÒ»µãD£¬Ê¹µÃ¡÷ABDΪµÈ±ßÈý½ÇÐΣ®
´ËʱֱÏßlµÄбÂÊΪ$¡À\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¡¢ÏÒ³¤¹«Ê½¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ¡¢Ô²µÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª£ºÔÚ¡÷ABCÖУ¬AB=AC£¬AB¡ÍAC£¬D¡¢EÔÚBCÉÏ£¬ÇÒ¡ÏADC=¡ÏBAE£®
£¨1£©ÇóÖ¤£º¡ÏDAE=45¡ã£»
£¨2£©¹ýB×÷BF¡ÍADÓÚF£¬½»Ö±ÏßAEÓÚM£¬Á¬CM£¬ÅжÏBMÓëCMµÄλÖùØÏµ£¬¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Éèf£¨x£©µÄÁãµãΪx1£¬º¯Êýg£¨x£©=4x+2x-2µÄÁãµãΪx2£¬Èô|x1-x2|£¼$\frac{1}{4}$£¬Ôòf£¨x£©¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=2x+$\frac{1}{2}$B£®f£¨x£©=-x2+x-$\frac{1}{4}$C£®f£¨x£©=1-10xD£®f£¨x£©=ln£¨8x-7£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¼¯ºÏA=[-2£¬4]£¬B=£¨a£¬+¡Þ£©£®
¢ÙÈôA¡ÉB=A£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa£¼-2£»
¢ÚÈôA¡ÉB¡Ù∅£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa£¼4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªµãRÊÇÔ²ÐÄΪQµÄÔ²£¨x+$\sqrt{3}$£©2+y2=16ÉϵÄÒ»¸ö¶¯µã£¬N£¨$\sqrt{3}$£¬0£©Îª¶¨µã£¬Ïß¶ÎRNµÄÖд¹ÏßÓëÖ±ÏßQR½»ÓÚµãT£¬ÉèTµãµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýÔ²x2+y2=1Éϵ͝µãP×÷Ô²x2+y2=1µÄÇÐÏßl£¬ÓëÇúÏßC½»ÓÚ²»Í¬Á½µãA£¬B£¬Óü¸ºÎ»­°åÈí¼þ¿É»­³öÏß¶ÎABµÄÖеãMµÄ¹ì¼£ÊÇÈçͼËùʾµÄƯÁÁµÄÇúÏߣ¬Çó¸ÃÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©µ½µãF£¨1£¬0£©µÄ¾àÀë±Èµ½Ö±Ïßx+2=0µÄ¾àÀëС1£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýxÖáÉÏÒ»µãQ×÷Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÎÊÊÇ·ñ´æÔÚ¶¨µãQʹ$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$Ϊ¶¨Öµ£¬Çó³öµãQµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=|x+1|+|x-m|£¨m£¾0£©£®
£¨1£©Èôf£¨x£©¡Ý5ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬¼ÇmµÄ×îСֵÊÇm0£¬Èô$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$=m0£¬Ôòµ±a£¬b£¬cÈ¡ºÎֵʱ£¬a2+4b2+9c2È¡µÃ×îСֵ£¬²¢Çó³ö¸Ã×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¶¯Ô²P£º£¨x-a£©2+£¨y-b£©2=r2£¨r£¾0£©±»yÖáËù½ØµÄÏÒ³¤Îª2£¬±»xÖá·Ö³ÉÁ½¶Î»¡£¬ÇÒ»¡³¤Ö®±ÈµÈÓÚ$\frac{1}{3}$£®
£¨1£©Èôa=-1£¬b=1£¬r=$\sqrt{2}$£¬Çó´ËʱÓëÔ²ÏàÇÐÇÒÓëÖ±Ïßx-2y=0´¹Ö±µÄÖ±Ïß·½³Ì£®
£¨2£©µãPÔÚÖ±Ïßy=2xÉϵÄͶӰΪA£¬Çóʼþ¡°ÔÚÔ²PÄÚËæ»úµØÍ¶ÈëÒ»µã£¬Ê¹ÕâÒ»µãÇ¡ºÃÔÚ¡÷P0AÄÚ¡±µÄ¸ÅÂʵÄ×î´óÖµ£®£¨ÆäÖÐP£¨a£¬b£©ÎªÔ²ÐÄ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x2-x+alnx£¬a¡ÊR£®
£¨1£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©ÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èô?x0¡Ê[1£¬e]£¬Ê¹µÃf£¨x0£©-£¨1+a£©x0¡Ý0£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸