精英家教网 > 高中数学 > 题目详情
16.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段PP′,则线段PP′的中点M的轨迹是(  )
A.B.椭圆C.直线D.以上都有可能

分析 由题意写出已知圆的方程,设出M、P的坐标,由中点坐标公式把P的坐标用M的坐标表示,再把P的坐标代入已知圆的方程整理得答案.

解答 解:如图,
由题意可得,已知圆的方程为x2+y2=4,
设M(x,y),P(x1,y1),
则$\left\{\begin{array}{l}{{x}_{1}=x}\\{{y}_{1}=2y}\end{array}\right.$,
∵P在圆x2+y2=4上,
∴${{x}_{1}}^{2}+{{y}_{1}}^{2}=4$,即x2+4y2=4,
则线段PP′的中点M的轨迹方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$.
故线段PP′的中点M的轨迹是椭圆.
故选:B.

点评 本题考查轨迹方程的求法,训练了代入法求曲线的方程,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ)且$\overrightarrow{a}$,$\overrightarrow{b}$满足|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k>0),用k表示$\overrightarrow{a}$,$\overrightarrow{b}$的数量积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设关于x、y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{3x-2<0}\\{y-a>0}\end{array}\right.$表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则a的取值范围是(  )
A.(-∞,-$\frac{5}{3}$)B.(-∞,-$\frac{2}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知不共线的两个向量$\overrightarrow a{,_{\;}}\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=2$,且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,则$|{\overrightarrow b}|$=(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义M{x,y}=$\left\{\begin{array}{l}{x,(x≥y)}\\{y,(x<y)}\end{array}\right.$,设a=x2+xy+x,b=4y2+xy+2y(x,y∈R),则M{a,b}的最小值为-$\frac{1}{6}$,当M取到最小值时,x=-$\frac{1}{3}$,y=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x+1,数列{an},{bn}分别满足an=f(n),bn=f(bn-1).且b1=1,
(1)分别求{an},{bn}的通项公式;
(2)记cn=($\frac{{a}_{n}}{{b}_{n}+1}$),求数列{cn}的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{m}$=(sinωx,sin(ωx+$\frac{π}{6}$)),$\overrightarrow{n}$=(cosωx,sinωx),其中ω>0,f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$.
(1)求函数f(x)的值域;
(2)若f($\frac{π}{6}$)=f($\frac{π}{2}$),且f(x)的图象在($\frac{π}{6}$,$\frac{π}{2}$)内有最高点但无最低点,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$y=2sin(2x+φ)(|φ|<\frac{π}{2})$的图象经过点(0,-1),则该函数的一个单调递增区间为(  )
A.[-$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα),α∈(0,$\frac{π}{2}$),且$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(1)求|$\overrightarrow{a}$$+\overrightarrow{b}$|;
(2)求$\frac{2sinαcosα}{sinα+cosα-1}$的值.

查看答案和解析>>

同步练习册答案