分析 an=4+(-$\frac{1}{2}$)n-1,利用等比数列的前n项和公式可得Sn=4n+$\frac{2}{3}$-$\frac{2}{3}×(-\frac{1}{2})^{n}$.代入3Sn-an-12n即可得出.代入1≤p(Sn-4n)≤3化为1≤p$[\frac{2}{3}-\frac{2}{3}×(-\frac{1}{2})^{n}]$≤3,即$\frac{3}{2}×\frac{1}{1-(-\frac{1}{2})^{n}}$≤p≤$\frac{9}{2}×\frac{1}{1-(-\frac{1}{2})^{n}}$.由数列$\{1-(-\frac{1}{2})^{n}\}$可得:研究数列的奇数项、偶数项的单调性即可得出.
解答 解:∵an=4+(-$\frac{1}{2}$)n-1,∴Sn=4n+$\frac{1-(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})}$=4n+$\frac{2}{3}$-$\frac{2}{3}×(-\frac{1}{2})^{n}$.
则3Sn-an-12n=12n+3-2×$(-\frac{1}{2})^{n}$-4-(-$\frac{1}{2}$)n-1-12n=-1.
Sn-4n=$\frac{2}{3}$-$\frac{2}{3}×(-\frac{1}{2})^{n}$.
∴1≤p(Sn-4n)≤3化为1≤p$[\frac{2}{3}-\frac{2}{3}×(-\frac{1}{2})^{n}]$≤3,
∴$\frac{3}{2}×\frac{1}{1-(-\frac{1}{2})^{n}}$≤p≤$\frac{9}{2}×\frac{1}{1-(-\frac{1}{2})^{n}}$.
由数列$\{1-(-\frac{1}{2})^{n}\}$可得:数列的奇数项为单调递减数列,最大值为$\frac{3}{2}$;数列的偶数项为单调递增数列,最小值为$\frac{3}{4}$,最大值趋近于1;
∴$\frac{3}{2}$<p≤3.
故答案分别为:-1;$(\frac{3}{2},3]$.
点评 本题考查了等比数列的前n项和公式、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{2\sqrt{14}}{7}$,$\frac{2\sqrt{14}}{7}$] | B. | (0,$\frac{2\sqrt{14}}{7}$] | C. | [1,$\frac{2\sqrt{14}}{7}$] | D. | (1,$\frac{2\sqrt{14}}{7}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com