精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\sqrt{{(x-1)}^{2}}$+$\root{5}{{(x+1)}^{5}}$的值域是[2,+∞).

分析 求出f(x)的分段函数的形式,得到函数的最小值,从而求出函数的值域.

解答 解:f(x)=$\sqrt{{(x-1)}^{2}}$+$\root{5}{{(x+1)}^{5}}$=|x-1|+(x+1)=$\left\{\begin{array}{l}{2x,x≥1}\\{2,x<1}\end{array}\right.$,
∴f(x)≥2,函数的值域是[2,+∞),
故答案为:[2,+∞).

点评 本题考查了求函数的值域问题,考查分段函数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAH⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=x2+x+a(a>0),且f(m)<0,则(  )
A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列{an}的前n项和为Sn,且an=4+(-$\frac{1}{2}$)n-1,则3Sn-an-12n的值是-1;若对任意正整数n,恒有1≤p(Sn-4n)≤3成立,则实数p的取值范围是$(\frac{3}{2},3]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.圆心角为60°的扇形AOB的半径为1,C是AB弧上一点,作矩形CDEF,如图,当C点在什么位置时,这个矩形的面积最大?这时的;∠AOC等于多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求符合下列条件的抛物线的标准方程.
(1)以直线x=2为准线的抛物线;
(2)以点(0,2)为焦点的抛物线;
(3)以双曲线x2-y2=4的中心、右焦点分别为顶点和焦点的抛物线;
(4)以坐标原点为顶点,坐标轴为对称轴且过点(-3,-1)的抛物线;
(5)以椭圆9x2+16y2=144的中心、左焦点分别为顶点和焦点的抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足2a1+4a2+…+2nan=$\frac{n(n+1)}{2}$.
(1)求证:数列{$\frac{{a}_{n}}{n}$}是等比数列;
(2)求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程$\frac{2+\sqrt{2}sinx}{2cosx+\sqrt{2}}$=$\frac{\sqrt{2}cosx+2}{2sinx+\sqrt{2}}$的解是{x|x=$\frac{π}{4}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知不等式组$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}\right.$所表示的平面区域为D,直线l:y=3x+m不经过区域D,则实数m的取值范围是(  )
A.[-3,1]B.[-3,3]C.(-∞,-3)∪(1,+∞)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步练习册答案